High Altitude Wind Power (HAWP)

For a sustainable production of electricity from renewable source Low cost - Low environmental impact

Strategic Business Plan

Table of contents

Executive summary [1-4]

- 1. Product history and strategic goals
- 2. Team and corporate structure

Demand / Energy Consumption Forecasts [5-6]

1. The "real" (energetic) cost of energy

High Altitude Wind Power [6-10]

- 1. Competing Methodologies
- 2. Overview of Players Status
- 3. Geographical spread of main players

The KiteGen[®] Technology [11-24]

- 1. The concept
- 2. Development history
- 3. KiteGen[®] Stem generator 3MW
- 4. Main advantages
- 5. Wind Farm configuration
- 6. KiteGen[®] industrialization plan
- 7. Current companies assets
- 8. Prospect of KiteGen[®] technology development
- 9. Onshore KiteGen[®] Carousel
- 10. Offshore KiteGen® Carousel
- 11. KiteGen[®] technology applications- K-Bus

The KiteGen[®] Technology [25-30]

1. Comparison: KiteGen[®] and Conventional turbines

Business development program [31-34]

- 1. Scenario with 8 KiteGen® Farms of size 33 MW
- 2. New partners and investors evalutation for limited time
- 3. Energy-intensive Industry
- 4. International Development

Product history and strategic goals

Prototypes phase ended

> 2003. Project starting

2006. Ist prototype Mobile - 30kW nominal output -Limited to low altitude experiments - Control system test

> 2007. IInd prototype

Mobile - 30kW nominal output -Altitude test up to 800mt -Production cycle test - Cabling and generation test

2010-2012. IIIth prototype

3MW nominal output - Stem configuration for wind gust management test - Duty cycle integration - Cut-in and cut-off testing

Industrialization phase of KITEGEN STEM 3 MW

> 2014H1

Continuous production test of Target design configuration -3MW output test -Tropicalization design -Complete machine test *Availability for existing partner's initial orders*

> 2015H1

Wing and ropes design improvement - First farm and ancillary systems construction - Quantitative target based production *Commercial availability*

> 2017H1

CAPEX/OPEX optimization -Software and management procedures update - Wing and ropes optimization -*Increased Capacity* Factor

Current status and future activities

	Kite Gen Research Srl	Sequoia Automation Srl	SOTER Srl
Founded	2009 in Turin (ITA)	1997 in Turin (ITA)	2011 in Turin (ITA)
Legal status	Società a Responsabilità Limitata (LTD)	Società a Responsabilità Limitata (LTD)	Società a Responsabilità Limitata (LTD)
Current Economic activity	Granting exploitation rights of intellectual property and similar products	Installation of instruments and appliances for measuring, checking, testing, navigating and other purposes (including industrial process control equipment)	Shareholding (Holding company)
Future economic activities	New IP delivery, IP maintenance and enforcement	Research and development Industrialization Machines production	Business & Partnership development, Farm project planning execution and support, R&D funding
Management form	Sole administrator + BoA	Sole administrator	BoD + MD
BoD	M.Ippolito 1 auditor	R. Renna	M.Ippolito (President) D. Zari (MD) E. Reyneri, M. Boetti

The "real" (energetic) cost of energy

The EROEI is defined as the Energy Return Over the Energy Invested ratio in a plant during its operational life (Picture 1). Oil, in the 1950's, had the highest EROEI ever recorded for any energy technology: roughly 100. In the 1970's it had already dropped below the value of 40. Today it has decreased below the value of 10, and we can assume that it will continue to decrease.

In other words, **oil is finishing its "life cycle**," not because there is no more oil (and "by-products") to extract, but because their energetic cost of extraction is increasing and therefore the EROEI is decreasing to values not sufficient to sustain growth and progress.

Picture 1: ERoEI - Energy Return over Energy Investment

High Altitude Wind Power

Exploit even a small part of this huge resource can solve the global energy challenge.

Copyright ©2014 KiteGenVenture srl

Different approaches were explored starting from first experiments in 2000. Current projects can be classified using the following categories:

1. Fly/Ground generation:

- the power generation took place on the ground, with tethering cables that normally pull a drum rotation
- or directly on the flying element and later transferred to ground using a power cable

2. Heavy/Lighter than air:

- Flying elements can be wings such as kites or full airplanes. Airplanes normally integrate a fly generator used also as propeller for take-off, wings need other solutions
- Lighter can take-off without any help

3. Pumping/Continuous generation:

- Pumping involve a cycled production later described. Used in heavy/ground gen
- Continuous production is available in fly gen systems (or future ground gen)

Overview of Players status (1/2)

HWWP Cord 2010 Absorber Verlagen Absorber Verlagen HWWP Cord 2010 Absorber Verlagen Absorber Verlagen HWWP Cord 2010 Absorber Verlagen HWWP Cord 2010 Absorber Verlagen HWWP Cord 2010 Absorber Verlagen HWWP Cord 2010 Absorber Verlagen HWWP Cord 2010		KiteGen [®] and other most advanced HAWP projects			
Masy Wolcow By Washer	Cuangeon HWMP Technology Ltd.	Business Focus	Status	Company structure	Finance
SkySails Germany	Shysain	 Ship traction using crosswind power / Traction power-kite with flying actuators 	product already sold to pilot customers- 50kW prototype - 1MW prototype u.d.*	 ✓ impressive management team ✓ Enstablished company 	solid long term investment structure
Makani Power USA		Generator (propellers / turbines) on board" variant Tether cable and energy transfer to the ground	recently shifted from flexible to rigid airfoils 30kW prototype	CEO left the team in 2009 and company shrank from 40 to 15 people.	 ✓ Financed by google with 15 M\$ since 2006 ✓ IInd round financing
EnerKite Germany		 Inflatable kite Traction power-kite with actuators and generators on a vehicle 	30kW prototype - 100KW prototype by 2015	core technical team left in 2009 to found new venture AmpyxPower	Financed by sponsors and local companies (port of Rotterdam) I st round financing

* u.d. = under development

KijeGenVenture

Overview of Players status (2/2)

	Business Focus	Status	Company structure	Finance
Ampyx Power, Delft Netherland	Plane	Is building pumping wind generator with rigid airfoils 10kW prototype	Founded by ex- members of TU Delft team	 Financed by seed investors and subsidies IInd round financing
Kite Power Netherland	generator on board rigid airfoils	Two different altitudes investigated 500-1000 m 10 000 m	about 30 people based in Santa Cruz	founded in 2009 by single investor JoeBen Bevirt (CEO) I st round financing
Guangdong HA WP China	 Pumping Parachute Generators Generator on ground 	recently shifted from flexible to rigid airfoils - 30kW prototype - 1 MW generator envisaged	CEO left the team in 2009 and company shrank from 40 to 15 people.	First round financing
Kite Gen Research Italy	 Large wings, fully automatic system, ground generation floating platform in off-shore version 	- Industrialization of Stem 3 MW - the only player with a working MW- size prototype	impressive management team - Strong partnership with multinational	Financed by seed investors and subsidies until 2012 - Industrial plan financed

Geographical spread of main players

MAIN PLAYERS:

Google SkySails 🖉 Univ Limerik Univ Sussex Ampyx Power International players Leuven control group SkySails <u>s</u>abic BOEING Aeroix / Festo GreenWings / TU Munich EnerKíte wissKitePower / ETH2 (iteGen / Poli Torin ALSTOM HAWP Conf 2009 KiteGen AWE Conf 2010 JobyEnergy Makani Power aeros*1 Guangdong HAWP ZEPPELIN VindLift CAT Technology Ltd. A Power **Power Systems** 广东高空风能技术有限公司 Oltmann Gruppe DSM IGHT SCIENCE. BRIGHTER LIVING. FESTO

SOME INVESTORS:

The concept

KiteGen® is the last evolution of wind energy exploitation: a radically new and innovative patented concept and system, with an estimated EROEI of 375, a value high enough to be the best "energy source" and most convenient technology known today to take advantage of high-altitude winds and produce clean energy without any CO2 emissions.

The KiteGen[®] Technology is designed to provide an answer for the increasing need of energy production, proposing a **NEW TYPE OF ELECTRIC GENERATION PLANT**, based on a renewable source, suitable for any territory unlike the traditional wind turbines, at costs lower than fossil fuel generation plants, in direct competition with today's conventional production (coal, oil or nuclear), **and in the very near future in the GigaWatt class**.

In order to exploit this huge amount of energy a radical change of perspective has been done:

 no more heavy and static structures, but lighter and more dynamic wind powered technology whose size is not affected by structural or dynamic limits as conventional turbines

Today

2. but large wings, driven by a high-tech control system based on avionic sensors, fly at high altitude, harvesting the energy of powerful winds, much faster and constant than those available to traditional windmills.

Very near future

KiteGen[®] is a working reality largely competitive with any power generation systems, renewables and conventional, including nuclear energy, both in terms of power rating and cost of energy produced.

Development history

Mobile Pumping Kite Generators

(KSU1 - Kite Steering Unit 1)

Kite Gen was in pole position in the high altitude wind energy exploitation world contest

Mobilegen 1 (2006)

- Ist prototype
- 30kW nominal output
- Limited to low altitude experiments
- Control system test

Mobilegen 2 (2007)

- IInd prototype
- 30kW nominal output
- Altitude test up to 800mt
- Production cycle test
- Cabling and generation test

Stem 3MW (2010-2012)

Pumping Kite Generators

March 2012, first flight and generation tests in Sommariva Perno (Italy)

(Stem 3 MW generator)

- IIIth prototype
- 3MW nominal output
- Stem configuration for wind gust management test
- Duty cycle integration
- Cut-in and cut-off testing

KiteGen Stem generator 3MW (1/5)

The KiteGen Stem is an industrial robot that can independently manage the flight of a large wing.

- Power kites, giant semi-rigid air foils, with high aerodynamic efficiency, harness energy from the wind, whilst being automatically piloted.
- All the heavy machinery for power generation stays on the ground.
- To connect the two systems, high resistance lines transmit the kites' traction and at the same time control their direction and angle to the wind.

A tethered system, connected to ground station by two high tech specialized cables

- A specialized semirigid wing with on-board sensors, flying at 300 km/h up to 9km height
- A unmanned «aerial vehicle», authomatically controlled in milliseconds from a ground based control system

KiteGen Stem generator 3MW (2/5)

» How it works

The "KiteGen Stem generator" combines a very simple concept of energy production – that of the bicycle's dynamo generator - with an extremely advanced technology.

- KiteGen STEM transforms high-altitude wind energy into electricity, transmitting the force generated from the wing to a number of alternators located on the ground. Two highstrength cables transmit the traction of the wing and control direction and orientation.
- When the cables are fully unwound, the wing is guided to a position where it loses wind resistance and the cables are wound up. The energy consumed during this phase is equal to a fraction of the energy produced during the unwinding phase.
- The automatic kite flight control system, receiving data from on-board avionic sensors, autonomously pilots the power kites, so that their flight patterns can be controlled, synchronized and directed to maximize the production of energy.

KiteGen work phases.

The wing flies from the height where cut-in wind speed is available (normally above 5-800mt, but max 9000 mt are possible), its trajectory loop is shaped as an horizontal «8», just like the kitesurfers do, and while rising up about 500mt from start height, the wing pulls the two ropes from the hearth of the machine (Active Phase).

When the maximum height is reached the wing performs the side-slip manoeuvre (patented) that rewinds the two ropes (Passive Phase) with a minimum expenditure of energy from the one gathered in the active phase. Then the cycle restarts.

KiteGen Stem generator 3MW (3/5)

» Stem product design

- Power wing
- Dyneema[®] tethering
- . Compass
- D. Stem
- E. Powered joints
 - Ground structure
- G. Suspended and rotating engine room
- H. 2 power drums, 2 control pulleys, 8 motor-generator

- I. cabinet and 6 actuators
- J. motorized joint
- K. drums
- L. motor drives and control

Structure description

- Power wing: Composite material flexible wing structure, 150mq
- Tethering: designed for 60 ton max traction, 30 ton working conditions
- Compass (optional) + Stem: gust
 control within few msec, dual cable control,
 21 mt
- Ground structure: flexible for gust control, contain power generators, 13 x 6 mt d x h. Light Foundation to support ground structure and cable pull
- Drums: horizontal sliding to avoid cable accumulation, cooled, pulleys control tension
- Cabinet: inverter limiting power volatility supercapacitor used during wing recovery phase
- Motorized joint: gust power damping, take-off support, cable tension keeping

KiteGen Stem generator 3MW (4/5)

Main advantages

- Production of great amounts of energy from renewable source and without CO2 emissions.
- A simple technology, but totally innovative and superior performances.
- Production, throughout the year, of more than double the energy produced compared to a traditional wind turbine of similar size..
- Higher availability of installation sites with lower impact.
- Greater energetic density per square kilometer of territory.

PERFORMANCES

- A KiteGen STEM generator, with a power of 3 MW, provides up to 6.500 operating hours yearly at rated power (depending on the site's features i.e. fly max height permit), ensuring very high ROI.
- The generator is reliable and suitable for any site, even if with little or no wind at ground level and difficult to access.
- The small size and reduced weight (less than 20 tonnes) makes the generator easy to carry and install.
- The simplicity of the machine and its robust construction ensure no degradation of performances over time.
- The only parts subject to wear are the cables and wings, consumable materials for the operation of the machine for a certain work time at rated power, after which they are replaced.

Wind Farm configuration

KiteGen Stem generator in Wind farm configuration

- The KiteGen[®] generator is a base module, suitable for solutions able to ensure a high scalability of the generation plant. "Wind Farm" configuration consists of a series of generators grouped together on a limited ground/sea space, in order to obtain greater energy production on a single limited site (Picture 1).
- This is possible both on sea and on the ground, with significant economies also from an organization and management point of view.
- Traditional windmills require spaces between the generators of on average 8-9 times the rotor's diameter, in order to prevent generated turbulences from reducing efficiencies
- KiteGen[®] exploits a third dimension (the altitude) and, thanks to the electronic integrated control system, can divide the flying space in order to make the wings fly always on a unbiased front wind in a reduced territorial space.
- KiteGen[®] generators can be placed 100 meters apart, thus enabling, on the same area required by traditional windmills, a nominal power production 4 times greater (Picture 2)

Picture 1: Wind farm configuration and grid connection

- 1. KiteGen[®] generator 3MW
- 2. Static converter
- 3. Short round trip accumulator
- 4. Electric line VHV

Picture 2: Spatial distribution of KiteGen[®] Wind Farm

- 5. Flying Kite with radio datalink
- Servo assisted take-off system (Energy needed <2kWh/launch)
- 7. Bus DC 600V (1600A x Tower)
- 8. KiteGen[®] wind farm

KiteGen[®] industrialization plan

State of art: Industrialization phase of KiteGen Stem 3 MW ongoing*

2014H1	2015H1	2017H1	
 Target design continuous production test 	 Wing and ropes design improvement 	 CAPEX/OPEX optimization 	
 3MW output test Tropicalization design	 First farm and ancillary systems construction Quantitative target 	 Software and management procedures update 	
 Complete test machine Availability for partner's initial orders** 	 based production in real conditions <u>Commercial availability</u> 	 Wing and ropes optimization Increased Capacity Factor 	
TARGET LCOE: 23 €/MWh TARGET LCOE: 10 €/MWh			

* Source: Sequoia Automation Industrialization Plan

**** Saudi Jubail CCU project.** KiteGen[®] will be responsible for the concept and basic engineering, front end engineering design (FEED) and detailed engineering, procurement, construction (EPC) and future maintenance of the power facility. This project will be the renewable energy cornerstone of a Saudi 66 billion \$ program aiming to power the region water desalinization.

Current companies assets

KRG - SEQUOIA	•	 3000 international Patents Contract for Saudi Jubail CCU project Agreements with ENAC/ENAV and on-going contacts with EASA 17.000 sqm, Stem R&D and building site near Turin 30 FTE staff for R&D 2 € Mil equipment for R&D and pre-series building Award - Internationally evaluated business idea 	
KGV	•	22,68% share of Intellectual Property (KGR) International development and future holding Active partners in the banking, wind project development, transportation, project development, consulting, legal sector	
Awa	rd -	Internationally evaluated business idea	Ministero dello Sviluppo Economico

REGIONE PIEMONTE

eni

award

SEVENTH FRAMEWORK PROGRAMME

COP15 COPENHAGEN 010

SHANGHAI CHINA

Prospects of KiteGen® technology development

KG Stem offshore

- Objective: develop offshore version of Stem
- Activities: floating platform design, location definition, testing, control optimization
- Effort: 2y
- Result: new product sales

KG Carousel

- Objective: Carousel product development
- Activities: whole design, prototyping, testing
- Effort: 5y
- Result: new product sales, power up GW

KG Carousel Offsh.

- Objective: Carousel product development
- Activities: whole design, prototyping, testing
- Effort: 5y
- Result: new product sales, power up GW

K-Bus E-mobility

- Objective: E-Mobility
- Activities: whole design, prototyping, testing
- Effort: 1y
- Result: new product sales

Onshore KiteGen Carousel

TECHNOLOGY PLANNED DEVELOPMENT

- Objective: Carousel
 product development
- Activities: whole design, prototyping, testing
- Effort: 5y
- Result: new product sales, power up GW
- Status: concept
- **Costs:** 0,5 €Mil/MW
- **PBT**: 8y

Value prop: greater scalability, high power density, even lower LCOE

Offshore KiteGen Carousel

TECHNOLOGY PLANNED DEVELOPMENT

- Objective: Carousel product development
- Activities: whole design, prototyping, testing
- Effort: 5y
- Result: new product sales, power up GW
- **Status**: concept
- **Costs:** 0,5 €Mil/MW
- **PBT**: 8y
- Value prop: greater scalability, high power density, even lower LCOE

KiteGen[®] technology enabled applications

» K-Bus E-mobility – Patented ultrafast recharge system

A new collective mobility paradigm, solving battery life limits

» Overview of relevant factors

Among other factors, the relevant ones are dimensions, masses, logistics, disposal, environmental impact, capacity factor, territorial energy density, site properties, levelized costs of energy, intermittence and EROEI, as shown in the table below:

	KiteGen Stem	Wind turbines
Equivalent working hours at nominal power	6800*	1700
Weight including fundations (tons)	20	2000
Min. distance between generators (m.)	100	1000 (9 x blade diameter)
Average ground machine height (m.)	30	150
Nominal power	3 MW	3 MW
Territorial energy density (average, MW/kmq)	300	4
Produced energy cost (€/MWh, Italy)	<20**	90-150

* Advanced Tecnological Learning Curve, ** Advanced Economical Learning Curve;

» Dimensions

- But high altitude wind remains out of the reach of current and the future's aerogenerating towers, already more than 100m high. Above a certain height the structure that holds up the rotors becomes exponentially heavier, more unstable, and above all more costly
- The relatively higher wind availability at lower altitudes at open sea still does not make traditional windmills economically feasible. The high thrust and moment generated by the windmill on the platform during operations require heavy, complex (and costly) platform and mooring systems in deep water.

KiteGen Stem 3MW ~34 m

» Masses

» Logistics, assembly and decommissioning

KiteGen Stem 3MW

- No component with a weight exceeding 120 kg
- Shipment in 3 containers 40"
- It does not require special equipment for assembly
- Easily removable and installation site easily restorable (use of micro-piles for foundations)

Copyright ©2014

KiteGenVenture srl

» Environmental impact major benefits of our offer

- Modest visual impact of the generator
- Virtually no visual impact of cables and wings (no shadow projected)
- Low noise to the ground, no reduction systems alternators
- Low noise of wings and cables in relation to the working distance
- Reduced impact on the ground (use of micropiles) and limited use of the same
- No infrastructural work required for transport and assembly
- No emission of CO2 or other gases
- Negligible impact with birds (normally under the operational portion of the wing)

Copyright ©2014 KiteGenVenture srl

» Territorial energy density

121 KiteGen STEM x 3MW

density: (363 MW)/Kmq 1000

6 Conventional Turbines x 3 MW

density: 18 MW/Kmq)

Business Development Program

Strategies

Exploit even a small part of this huge resource can solve the global energy challenge.

Scenario with 8 KiteGen farms of size 33 MW

Opportunity of Investment in KiteGen Venture

Energy–Intensive Industries

KiteGenVenture

KiteGenVenture srl

KiteGer

International Development

35/36

KiteGen[®] Technology Business Development Management

KiteGenVenture Srl

Corso Lombardia, 63/c 10099 San Mauro Torinese (TO) Italy Email: soter@kitegenventures.com

Awards - Internationally evaluated business idea

We strongly believe that the exploitation of this resource can be the solution that everyone is awaiting, in order to mitigate, if not cancel, our dependence on fossil fuels while drastically reduce the emission of greenhouse gases.