KiteGen Power Wing
The first model of the “Power Wing”, a wing specially designed for the production of energy, has been finally released by the KiteGen laboratories. We show you a preview.
The availability of a “Power Wing” is the main enabler for the mass production of low-cost energy from tropospheric wind.
The kite sports are made of very light materials but are not designed to produce great powers. The concept of “Power Wing” never existed on the market up to date and all the HAWE actors, after having successfully tested the production of energy (up to a few tens of kW) by using sport kites (first KiteGen in 2006), have had to deal with the lack on the market of a kite capable of resisting forces exceeding few tens of kW. This led to the difficult choice between developing a small, sometimes movable, power system, and designing a new, efficient, lightweight but strong wing, able to withstand megawatts forces.
This dilemma has of course also touched KiteGen, which eventually made the second choice. That choice appeared to us as obliged: in fact, to give up the Power Wing concept, would have meant confining the technology to a niche of small power systems. These systems are unable to compete with renewable sources – already available on the market and widely tested – since the scale factor, in tropospheric wind energy, strongly hits the performances of the systems, by determining their relative competitiveness, a main success factor, given also the novelty of the HAWE technologies.
The KiteGen Power Wing, therefore, represents a quantum leap in the field of tropospheric wind energy, and allows the shift from the experimentation of low power prototypes towards a new generation of megawatt class machines that, thanks also to the modular design and the “farm” deployability, allows the system to target the GW class, thus competing in the largest segment of the energy market.
The choice of the market segment in which the systems should position, is not only relevant for economic purposes but also from the point of view of its potential contribution to adverse the climate change and the depletion of energy, which is worsening the worldwide socio-economic crisis and stimulating access to dirtier resources, such as coal and shale.
The small systems would be confined to niche markets and their contributions to social and environmental issues would be in fact limited. The comparison of turnover and produced energy by micro/small wind turbines and big size wind generators is iconic.
The “Power Wing” is therefore an inescapable issue and KiteGen faced it by getting a first major success, which has required time and resources.
Initially, the effort has been directed to settle the intellectual property issues, with several patents describing the “Power Wing” key features and the auxiliary systems. Then we focused on the design, by deploying the most quoted tools for computational fluid dynamics on powerful parallel computing systems.
In the meanwhile the most suitable materials and composites have been selected and finally it has been invested on an industrial plant able to deal with the entire supply chain, from material procurement to the finished product.
A robotic line has allowed the production of 20 tons of molds used for manufacturing and curing the wing segments, which are made of composite materials. Even the production of accessories (ailerons and bulbs) is done by robots, while all assemblies and processes are labor intensive and involve highly qualified staff.
The result, as can be seen from the picture below has the dimensions of the wing of a large airliner but is lightweight and semi-rigid. The wing is formed by 9 ashlars hinged together by flexible joints, thanks to which it can easily change configuration in order to vary the wing lift factor.
Our readers that look always forward to news from KiteGen and are often disappointed by the lack of new footage of flights with sport kites (which are more and more produced by our competitors – see review) will finally understand that the time from the presentation of the latest movies is not spent in idleness but, on the contrary, led to opening a new perspective of being able to produce great powers from tropospheric wind.
The road to the refinement and optimization of the Power Wings is still long and can be compared to that covered by the blades of wind turbines (which are kind of wings, by the way), with substantial resources committed to research and development and many universities and companies involved, but the path to tropospheric wind machines of the MW class is definitely traced.