Posts tagged: Ippolito

KiteGen and Alcoa Updates

comments Comments Off
By stekgr, September 21, 2012 3:53 pm

Kite Gen Research has become the third group to express interest regarding the aluminum smelter located in Sardinia run until today by Alcoa.
In Italy we often hear on the news the name of this company, which sadly is associated with the risks of closure and the consequent social demonstrations of its workers.
The area where Alcoa operates is one of the poorest in Italy, where unemployment rate is one of the highest, while the root cause of the problems behind its past and its future are strictly connected with energy prices. The combination of these factors, together with the recent academic studies published by Nature Climate Change (Geophysical Limits to Global Wind Power) inspired KiteGen in proposing an alternative solution to this situation.
On September 10th KiteGen sent an offer to the Italian government and the relative parties involved (Sardinian Regional Government, Alcoa, Minister of Development, Etc): KiteGen proposed the implementation of its “Industrial Program 50 Machines” (currently also under negotiations with other parties) for the production of energy of the Alcoa’s smelter from what it will be the world’s first large scale tropospheric wind farm.


KiteGen received official interest from Alcoa and from the president of the Sardinian Region, Ugo Cappellacci.
On Monday the 17th a delegation from KiteGen headed by its president Massimo Ippolito was hosted by the president of the Region in Cagliari to discuss the contents of the proposal.

KiteGen would like to point out that the meeting has been positive, the Regional authorities present in the meeting together with the academic presence of Dott. Damiano from the Cagliari University, were competent, prepared and opened to the views shared by KiteGen.
The two steps outlined in the documents posted on the 10th of September were discussed and there seemed to be concrete interest from the Sardinian authorities.

KiteGen offers its expertise and its innovation for implementing a short-medium term solution to the Energy issue that Alcoa most of all, but all industries in general have to face sooner or later. KiteGen solution is different from the temporary energy price agreement that might keep the smelter open in the short term. KiteGen wants to provide clean, cheap and abundant renewable energy, the only remedy that could solve this and other difficult situation in Italy, Europe and Globally.
The cost of energy is one of the main reasons why the Sardinian plant has found it difficult to compete and could be sold or closed. A relatively big Kitegen Stem wind farm at regime (200 Stems= 600 MW) could provide continuous power to the smelter at 20 €/MWh, a price lower than the one required by Alcoa to be competitive, 25 €/MWh; lower than the one that Alcoa benefitted from bilateral agreements in the last 15 years of production, roughly 33 €/MWh; and ¼ of the average market value of electricity of 80€/MWh.

Furthermore, if KiteGen will be included in the Alcoa “solution” the smelter might benefit from energy generation through renewable source: this would also contribute in cutting CO2 emissions for the plant and therefore reducing or even save up and trade the allowance assigned by the ETS to the smelter (Emission Trade Scheme) which comes in force from next year.

We hope that the authorities, both Regional and National will soon understand the potential of this source (KiteGen is merely a technology for extraction, the High Altitude Winds are the massive “Oil Fields” above our heads), also because KiteGen would be happier to develop first its technology on the Italian territory and in a social context of real need and only after this important Italian test bench start the commercial and industrial proliferation in other areas.

One of the strengths of the KiteGen proposal is that politicians are now searching for a quick solution, based on energy price subsides needed to keep the smelter on.  Those subsidies, even if allowed by EU, could be granted only for a short time, or in any case they do not represent a long term solution, rather it is just a way to gain time and mitigate the problem until a solution “falls from the sky”.  Whoever the new owners of the plant may be,  they will find it hard to compete without new subsidies, and in a climate of recession the chance for new allowances would be harder.  The KiteGen solution (which literally comes from the sky), could be rapidly deployed during the short term EU allowance that Italian Government is likely to obtain and it will gradually eliminates the need for new energy price agreements, helping securing the future of the Portovesme plant and hundreds of related jobs.

Kite Gen asks the government to apply for EU funds of 1.3 billion euros ($1.7 billion) available for innovative projects, to demonstrate the feasibility of the KiteGen Stem technology at the scale required for the Sardinian plant, and hopes the authorities will not lack such a strategic view of the problem, considering also that there are already so many investments in other directions less promising than the one proposed by KiteGen.

In our view the risks are outplayed by the great opportunities of a competitive and fully sustainable technology that only scratches the greatest source of kinetic energy that our planet has. Is it also your view?

Stefano

Global Warming & Global Power? Wind can power and even cool down the world!

comments Comments Off
By stekgr, September 21, 2012 11:22 am

Translated from Massimo Ippolito’s post:

On September 9th NATURE CLIMATE CHANGE Journal published a paper by Ken Caldeira, Kate Marvel, Ben Kravitz containing further confirmation of KiteGen positions and other brand new information of great importance. The following day, as a logical consequence and necessary act, we sent two letters to the Italian government with the proposed solution for ALCOA. Maybe it was an act too confident about the immediate impact of the NCC’s work and the good media coverage obtained by the article[Short video that introduces the study].

We counted on the contents of the scientific paper, full of meaningful information, in order to provide support to the economic arguments regarding the natural source and our technology. We thought that the Italian Minister of Economic Development Corrado Passera would jump up from his chair saying “Here’s the solution!”, instead, so far, all we heard through journalists is a skeptical comment.

Now let’s try to in this article to analyze the work of Caldeira, Marvel and Kravitz maybe step by step in several posts, of course well-reasoned comments from the readers are welcome.

Climate Change and Global Warming/Cooling?

The blog linked here (Italian), written by Physics and Mathematics professor Marco Pagani, identified and highlighted an aspect of the NCC work that turns out to be a novelty, perhaps a safety anchor of great relevance in relation to climate change/global warming. The graph analyzed by Pagani explains how it is possible to extract enough energy to power humanity with negligible changes in atmosphere temperature, while it is even possible to cool down the atmosphere if we could extract roughly 430TW (20 times humanity’s need) from the wind. The essential point is that Caldeira et all, clearly state that we can use as much wind power as we want, with negligible consequences to the climate, and that the only limits to wind energy technology might be relative to their costs and efficiency. While an extensive usage of this source might even be a solution to global warming.

How much can we get from wind?

Beside of climate change discussions, according to scientific publications and substantially confirmed by this latest paper, above Italy flows a total power whose magnitude is around the 100 TW. Let set 1TW as maximum extractable power from Italy, or an arbitrary 1% of what naturally flows, for the pleasure of round numbers and in order to offer a significant metaphor. Saudi Arabia produces 12.5 million barrels of oil per day, 521,000 barrels per hour, the thermal power equivalent of about 1 TW, equivalent to what hypothesized that we can extract from the Italian tropospheric wind while limiting climatic changes. This is great, isn’t it? Check the calculations if you do not believe it, they are fairly easy.

Technically we also have so much solar radiation, but to collect it we need devices deployed on the territory, while for wind power the photovoltaickinetic panel is the atmosphere itself! Already naturally deployed and maintained, KiteGen is only the PTO that collects the energy collected from the atmosphere.

I would like to highlight another graph showing in particular the advantage of tropospheric wind.

KEE vs drag area graph

The blue line is attributable to KiteGen, the red line is attributable to wind turbines. The vertical axis indicates the size of the surface that intercepts the wind, compared with the rate of extraction of kinetic energy on the abscissa.

In order to draw a power of 480TW, each kilometer cube of the entire surface of the planet must have a “classic” wind turbine that catches a wind front of 10000square meters, one hectare, while in the tropospheric wind are sufficient equivalent of 23 square meters for km cube.

The tropospheric wind, however, is not limited to cubic kilometer near the ground, but the study uses ideally the whole atmosphere, and to clarify the calculation of the equivalence of the surface of 23 square meters must be multiplied by the number of stacked cubes, typically 10, corresponding to the entire troposphere.

So a wing brushes 230 square meters in altitude would be equivalent to a wind turbine that works against a wind surface of a hectare.

We said “wing brushing a surface”, but how big must the wing be?

A simplified method is to divide the area to be swept with the same aerodynamic efficiency of a wing with efficiency 10 so that we will have an area of ​​23 square meters equivalent to a 2.5 MW classic wind turbine typically “brushing” one hectare of wind.

The practical and technological interest is to obtain the desired power in an ideal compromise between workload and surface, which is why we chose the KiteGen Stem flying below 2000 meters with wings up to 150 meters of surface.

The fluidity of data and KiteGen performance, which depend heavily on configuration decisions: the wing, the altitude and the wind speed; are obviously one of the things that annoy people used to precise specifications, these people instead of enjoying the freedom of modulation and opportunities they tend to be cautious over the whole project, probably the view also of some government consultant.

In fact, in this latest media coverage, as I said, the only comment we heard from the Ministry that should support us (Innovation & Economic Development) was a very general kind of skeptical comment on KiteGen technology. Personally, it seems that politicians are no longer able to think independently without the lobbies that hound them constantly. Those sectors who has not created a lobby is excluded from all reasoning and opportunities, even if it is for the benefit of the country and the community.

But if it would be clear to everyone that we have the equivalent of a Saudi Arabia within the national territory, would we still be asking questions at the level of bankers, executives, politicians, ministers regarding the particular system of drilling to extract that energy and how to achieve it?

No! please, is complex, just trust all the patents “Granted”, the awards and the 12 proposals in response to calls for national and regional technological innovation, awarded funding but unfortunately still without coverage. Instead put us in a condition where we can keep working and we will solve all of your doubts.

ENERGY STORAGE UNDER KITEGEN PERSPECTIVE

comments Comments Off
By stekgr, June 20, 2012 4:03 pm

Originally written by Massimo Ippolito

An insightful analysis, as always, by Domenico Coiante argues about renewable energy issues and the need for daily and seasonal storage.

It seems a good opportunity to introduce and clarify the opportunities offered in this area by the largest source of concentrated energy on the planet, the tropospheric wind.

The graph shown here comes from the methodology section of the “atlas of the winds of high altitude” of Cristina Archer and Ken Caldeira. It is a sophisticated representation which expresses a competitive or collaborative comparison between the possible accumulation of traditional systems, and the ‘opportunities to exploit the naturally stored energy in the geostrophic wind. Furthermore, it introduces “a trick” to get an annual availability of 99.9%, or 8751 hours a year guaranteed, far higher than any traditional source and nuclear power plants.

My suggestion is to devote sufficient time to decipher the original document, because the implications are of extreme importance. On this graph I added the indications referred to an example of KiteGen 3MW to make it easier to understand the logic. Note that the KiteGen Stem machines that fit in the example should be equipped with wings of 150 square meters with an equivalent aerodynamic efficiency of over 20.

The winds that envelop the planet can be seen as a huge “flywheel” of energy storage. The atmosphere has a total mass of 5 million billion tons, 5 * 10 ^ 18 kg, that flow with an average speed as to bring the total of 100,000 terawatt-hours of energy accumulated. To provide a comparison, this figure corresponds to the energy needs of the current activities of humans for over a year, but with the advantage that this massive accumulation is permanently restored by the photothermal solar dynamics.

While the photovoltaic panels must be deployed on the territory in order to minutely collect the energy supplied by the sun, KiteGen instead, is the PTO of this wide ” photovoltaic photomechanical panel” already naturally established and maintained by the atmosphere itself. This panel has collected energy in the kinetic form, which is a noble form, and it is therefore available for an efficient electrical conversion.

In a specific place, the example is referred to the New York area, the KiteGen generator can reach and pick up energy from this flow, with the probability of finding it powerful enough to produce power at rated power for 68% of the time, an equivalent already amazing of about 6000 hours per year. However, there is a limitation that does not depend on the flow of the wind fading but simply by the fact that it changes cyclically and erratically latitude.

So what is the idea that the diagram shows to push the tropospheric wind up to a 95% availability or even to a 99.9%? Simple enough, you need two generators located throughout the area at a distance sufficient to have at least one hit by the wind flow. The two generators are to be considered as a single system that will double the need for 68% of the time, but that will give a guarantee of delivery of the nominal value of one (of course this will cost twice as much).

In the chart, a comparison is made with equivalent and hypothetical electric storage systems, to achieve the same result of the two generators spaced.

If we assume a cost of electrochemical accumulation of 1 € / Wh, a point I have shown in the figure (b) it suggests 34.5 MWh. From this we get 34.5 million euro only for the storage batteries necessary for carrying out the service and bring availability to a 95%, cost in the order of magnitude of more than 10 times compared to the brilliant idea of having a spatial distribution of tropospheric generators.

What do we get from these reflections?:

1) The intermittent supply that plagues conventional wind and solar can be successfully overcome with the tropospheric wind; attributing the exclusive of the baseload on thermal plants is no longer correct.

2) The economic balance of this double facility can easily sustain the redundant generators as it can count on 68% + 68% + 32% of hours of availability, which would correspond to 11560 hours / year equivalent.

3) In case of advanced deployment and sufficient spatial distribution of KiteGen Stem farms, or KiteGen Carousel, these reflections will lose their special value, since the effect of redundancy is achieved inherently.

4) The redundancy would lead to have an excess of potential output, but the KiteGen are easily and quickly adjustable by means of a central coordination, providing a precise adaptation to the demand curve.

5) The excess energy due the redundant operative systems could be contractually provided at discounted rate to interruptible customers

6) The graph refers to the New York area, but the orographic influence that slow the winds fades as we go at higher altitudes, making it a good example for most of the globe.

The Manipulator

comments Comments Off
By stekgr, May 7, 2012 10:30 am

Click For Video Link

Here a short explanation of one of the key components of the KiteGen Stem: The Manipulator

The “manipulator”, so nicknamed because its movements resemble the movement of a human wrist that controls the orientation and position of the kite from the top of the STEM. The distance between the two long antennas vary depending on the needs of the control software and its main function is to assist the take-off and landing manoeuvres.

In standby position, (with the kite hanging from the stem like a hammock) without the manipulator the kite tends to twist on itself and therefore blocking the take off manoeuvres, while keeping the antennas open it is easier to keep the kite open and aligned for the take-off. Taking off with the manipulator helps the air to be channelled in the kite and then closes with extreme speed. Once the kite is in the air the two antennas are closed and aligned to the Stem axis and its presence becomes imperceptible.

Each of the antennas is made in Kevlar/carbon and it is sensorised on 2-axis for the pull of the rope that passes through them. The system is capable to feel the forces in play and react in accordance to these inputs, so that in a situation with open antennas where the kite has just been launched, the pull of the ropes transmit a signal to the motors of the manipulator which react and closes automatically.
The two motors at the base of the stem manage the operating levers of the antennas through a long “push-pull” bowden system (similar to the mechanical principle of a bicycle’s brake). During the landing phase the system again spread apart the antennas facilitating the stability of the kite in its descent.

Lastly the sensitivity of the two antennas helps the whole system in terms of force control and positioning, similarly like the last portion of a fishing rod.

The manipulator, now in its fifth version, is a working reality of the concept idealized by M.Ippolito and reproduced in the model presented in various occasions

You can also download the video from here

KiteGen Model realized in 2008


Panorama Theme by Themocracy