Category: venti alta quota

I paesi del Golfo hanno più energia in cielo che sotto terra: lo studio pubblicato in Nature Scientific Reports

comments Comments Off
By eugenio saraceno, 2018/03/20

La prestigiosa Nature Scientific Reports ha pubblicato lo studio

High-altitude wind resources in the Middle East

da cui abbiamo estratto la mappa delle medie dei wind speed maxima (WSM) qui sotto riportata

Scopo dello studio è la caratterizzazione della risorsa venti d’alta quota sulla regione mediorientale, con particolare attenzione ai paesi della Penisola Araba, e la stima del potenziale di produzione di energia elettrica utilizzando la tecnologia KiteGen con unità da 3 MW.  Questo studio è parte delle iniziative finanziate nell’ambito della collaborazione tra KiteGen e SABIC, azienda controllata dal Ministero del Tesoro del Regno Saudita, per lo studio e lo sviluppo della fonte energetica troposferica.  Lo studio conclude che la risorsa energetica vento troposferico disponibile sul medio oriente è superiore alla risorsa di idrocarburi presente nella stessa regione e che la tecnologia dell’eolico troposferico potrebbe fornire gran parte della produzione di energia elettrica dei paesi del Golfo.

Il Comitato Scientifico di KiteGen, guidato dal Prof.Giancarlo Abbate dell’Università Federico II di Napoli ha collaborato con il team della King Abdullah University of Science and Technology (KAUST ) per fornire gli elementi di valutazione.  Purtroppo la pubblicazione contiene ancora errori, imprecisioni e sottostime che mostrano un potenziale di sviluppo della produzione di energia dalla troposfera, ancorchè grande, minore di quello che è in realtà; in particolare pesa il presupposto di dover distanziare gli impianti di 10 km l’uno dall’altro; tale distanza è di un fattore di diversi ordini più grande del necessario, portando gli Autori a sottostimare di un similare fattore il potenziale di produzione di energia elettrica.    Siamo abituati a rilevare, persino in pubblicazioni scientifiche, un generico atteggiamento superficiale ed irresponsabile nei confronti di un progetto che, pur avendo risolto tutti i nodi scientifici e tecnologici di fattibilità industriale, per la sua diffusa percezione di “bizzarra e troppo ambiziosa idea imprenditoriale” che di fatto non è e non può, pertanto, permettersi leggerezze ed imprecisioni nella esposizione.   Viene da dire che sarebbe opportuno “fare i compiti a casa” per tutti quei soggetti, da Bill Gates ad Irena (che hanno diffuso la sensazione che l’energia dagli high winds sia qualcosa di molto importante che si concretizzerà in un futuro non troppo vicino) e le varie società di consulenza che in questi ultimi anni hanno prodotto report e surveys sulle tecnologie eoliche troposferiche, ma mancando delle competenze per fornire una informazione completa e corretta.

Per cui ci ripromettiamo di essere più assidui nella comunicazione e tentiamo di rimediare pubblicando di seguito il testo in forma di rebuttal inviato a Nature ed agli Autori, con i commenti del Comitato Scientifico.

Comment #1. At page 1, second paragraph (3 lines before the end) we can read “Active projects include
KiteGen (drag) and Makani (lift)”. This is clearly a typing error, because in the following line the authors
write that KiteGen is in the development of a ground-based device, and Makani is working on an onboard
generator, while in the preceding lines they write “There are currently two major types of AWE
generators: drag type devices with generators on board with a tether that transmits electrical power,
and lift type devices that transmit mechanical power in reeling the tether connected to a ground based
generator.” So, probably the authors would have written: “Active projects include KiteGen (lift) and
Makani (drag)”.
Comment #2. This is closely connected to comment #1. In the sentence about drag type and lift type
devices, the authors seem to classify the two types with the kind of power generation, identifying onboard
generation with drag device and ground-based generation with lift device. Actually, this is not
the case. Giving per granted the definitions of lift and drag in aerodynamics (from Wikipedia: “A fluid
flowing past the surface of a body exerts a force on it. Lift is the component of this force that is perpendicular to
the oncoming flow direction. It contrasts with the drag force, which is the component of the surface force parallel
to the flow direction.), it is out of doubt that may exist on-board generators based on lift forces, as well
as ground-based generators. In fact, as far as I know, both KiteGen and Makani are lift type devices. So,
all the last part of the second paragraph at page 1 is confusing or not correct.
Comment #3. At page 9, in the Section Deployment Assumptions, the second bullet is about system
density and is the following: “System density: calculated based on how many AWE systems can be deployed in
an area. Assuming that a fully extended tether to reach any altitude within the chosen portion of the boundary
layer is 3 km, one unit of AWES is allowed in each 10 km × 10 km grid cell.” Now, it seems that the assumption
is about the tether length, and this sounds reasonable. But, actually, the strongest assumption is about
the 10 km × 10 km grid cell needed to host a single AWES. This assumption does not appear reasonable
and is in striking disagreement with the estimates given and documented by the company that is
developing the 3 MW generator (KiteGen). The disagreement is by four orders of magnitude, so huge
that a deep rethinking is needed, at least in my opinion.
Comment#4. In the same Section at page 9, in the third bullet “Spatial exclusions”, the proposed
constraints are very tight, and even too tight. AWES equipment is 10 to 100 times lighter then
windmills, allowing to access installation sites (like most mountainous areas) that are not available to
windmills. Although forests and wetland areas in Middle East are not so large, these might be easily
accessed for installing such light devices. For the same reason, AWES offshore generation (even deepwater)
is technically feasible and easier than offshore windmills, nevertheless marine regional areas are
not considered in this article. Even though we may consider that offshore AWES would be less
convenient than land-based installation, however it would be suitable for countries like Bahrein, having
a limited land extension and plenty of available sea area around it.

Audizione parlamentare di KiteGen Resarch sulla Green Economy


Il 21-03-2014 si è tenuta l’Audizione di KiteGen Resarch presso le commissioni riunite Attività Produttive ed Ambiente della Camera dei Deputati nell’ambito del programma di audizioni dedicato alla Green Economy.

click qui per ascoltare l’audio dell’intervento

Di seguito riportiamo il testo integrale del documento presentato alla commissione.

Grazie Presidente, Onorevoli Deputati,

Al netto delle problematiche di tipo ambientale, l’accesso a fonti energetiche a basso costo è fondamentale nello sviluppo socio-economico. Il contenuto energetico – diretto ed indiretto, quello che si suol dire Emergy o energia incorporata – di ogni bene e servizio prodotto, distribuito e commercializzato è spesso tale da determinarne il prezzo di vendita quindi, a parità di reddito, l’aumento o la contrazione della domanda.
L’energia è inoltre un bene solo assai limitatamente sostituibile (dalla tecnologia principalmente) quindi sfugge alle logiche economiche basate sulla dinamica prezzo/sostituzione. All’ampia disponibilità di energia a basso costo ha seguito il tumultuoso periodo di crescita economica e di sviluppo umano registrato nel dopoguerra, così come la perdurante crisi odierna, tanto più evidente in paesi come il nostro, pressoché privi di risorse energetiche, è ricollegabile all’alto livello dei prezzi delle risorse energetiche. Alto livello raggiunto per ragioni strutturalmente inerenti alla riduzione di disponibilità di risorse energetiche facili da estrarre ed alla necessità di ingenti investimenti per intraprendere lo sfruttamento di risorse meno accessibili. Tale considerazione ci fa affermare che se anche la riduzione del prezzo dell’energia dovuto alla distruzione della domanda conseguente alla crisi dovesse stimolare una nuova, timida, ripresa, l’effetto dell’aumento di domanda energetica dovuto a quest’ultima non tarderebbe ad intervenire, vanificando ogni progresso. Ed è vano, in tale contesto, invocare quelle misure anticicliche di intervento pubblico poiché le risorse per dette misure dovranno essere attinte da un futuro sviluppo economico che non avrà luogo per le premesse descritte, risolvendosi in un mero aumento del debito la cui probabilità di rientro diminuisce progressivamente.
Se consideriamo la sfera economica ricompresa nel più ampio contesto eco-ambientale e poniamo la nostra attenzione sui principali problemi che il genere umano si trova a fronteggiare e che sono di una tale gravità da metterne, per la prima volta nella storia, a repentaglio l’esistenza, problemi quali acqua, cambiamenti climatici, rifiuti, povertà e malnutrizione, sviluppo e dignità umana, possiamo affermare che, per ciascuno di questi, esiste una soluzione legata alla piena disponibilità di energia pulita a basso costo. Lo sviluppo della green economy risulta quindi non solo un’opzione ma anche una necessità per il rilancio dell’economia, a condizione tuttavia che le nuove tecnologie di generazione (da fonte rinnovabile) siano intrinsecamente (ancorché anche solo potenzialmente), “vantaggiose” da un punto di vista sia economico che energetico, diversamente risulteranno inabili a contrastare tale tendenza e, ove sovvenzionate, rappresenteranno un mero costo per la collettività, come già argomentato.
Il recente rapporto di Assoelettrica (1) evidenzia come dal 2012 al 2013 la riduzione della produzione termoelettrica si attesti intorno ai -28,8 TWh di cui 10,4 imputabili al calo della domanda e 18,4 alla sostituzione con fonti rinnovabili. Ai prezzi correnti del gas, approssimativamente 0,3 euro per metro cubo, il combustibile per produrre tale quantità di energia sarebbe costato circa 1,1 mld di euro. Il quinto conto energia si è chiuso al raggiungimento dei 6,7 mld di sussidio annuo che, ripartito sui 22.146 MWh di energia prodotta dagli impianti fotovoltaici, produce un costo medio di 300 euro MWh ovvero la sostituzione del termoelettrico con il fotovoltaico nel 2013 è costata 5,56 mld di euro di oneri di sistema ridistribuiti sulle bollette degli italiani facendo sì che il vantaggio della riduzione del PUN, sceso a 65 euro/MWh non abbia alcun effetto sul costo dell’energia alla distribuzione.
Questi 4,46 mld di euro di maggiori costi, detratto il combustibile risparmiato, dovrebbero rappresentare il vantaggio ambientale, che non siamo in grado di calcolare con esattezza ma che si realizzerà durante l’intero ciclo di vita degli impianti mentre il carbone utilizzato per produrre i pannelli, in massima parte cinesi, è stato già bruciato arrecando un danno immediato che ci proponiamo di sanare nei prossimi 20 anni. Peraltro non siamo gli unici a criticare il meccanismo dei sussidi, i tedeschi dell’Institute for Energy Research hanno pubblicato un report (3) in cui, sulla base dei dati relativi all’ampia esperienza tedesca, argomentano che ‘Il principale meccanismo di supporto alle energie rinnovabili, basato sulle tariffe feed-in, in fatti, impone alti costi senza produrre alcuno dei supposti benefici sulle emissioni, l’occupazione, la sicurezza energetica o l’innovazione tecnologica’.
In particolare sull’ultimo supposto beneficio, essendo in prima linea sul fronte dell’innovazione tecnologica, ci troviamo particolarmente d’accordo nel sottolineare come il meccanismo del conto energia abbia stimolato non già la ricerca di soluzioni più avanzate e sostenibili nell’ambito delle tecnologie rinnovabili ma abbia cristallizzato quelle tecnologie ancora immature ma già profittevoli tenendo conto dell’incentivo, sterilizzandone di fatto ogni progresso e spostando gli investimenti dalla necessaria ricerca e sviluppo alla produzione di massa di sistemi che, non reggendosi su basi economiche sostenibili, hanno perso ogni attrattiva quando i principali paesi contributori, tra cui l’Italia, hanno rallentato le sovvenzioni; come dimostra la lunga catena di fallimenti delle aziende solari in Europa, America ed ora anche Cina.
Ci avete interpellato per conoscere la nostra posizione in merito alla Green Economy e sentiamo il dovere e l’enorme responsabilità di rispondere adeguatamente, non solo denunciando ciò che, a nostro avviso, per citare il punto 7 del programma della presente indagine costituisce un “profilo problematico del modello di sviluppo green economy”. Siamo qui per affermare che Il giacimento di energia pulita a basso costo è sempre esistito, si dispiega su di noi sotto forma di immense quantità di energia solare trasformata in nobile energia meccanica mediante il più grande “pannello solare” a nostra disposizione: l’atmosfera terrestre. Un pannello che può essere definito fotocinetico anziché fotovoltaico, sempre pronto all’uso e manutenuto gratuitamente dalla natura. La rivista Nature Climate Change (2) nel settembre 2012 stimava la potenza estraibile dal vento troposferico, senza apprezzabili modifiche climatologiche, in valori prossimi a 1800 TW, ovvero più di cento (100) volte, in termini di flusso energetico, l’attuale fabbisogno di energia primaria dell’intera umanità (stimato in circa 16-18 TW).
Sulla sola Italia fluisce una potenza totale intorno ai 100 TW. Ipotizzando di riuscire ad estrarre e rendere disponibile lo 0.1% continuo (100 GW) da tale giacimento, l’energia ottenibile corrisponderebbe ad oltre 800 TWh all’anno, valore equivalente ad una produzione netta di ricchezza endogena stimabile in 60 miliardi di euro l’anno (cifra analoga alla bolletta energetica italiana).
La maggior parte di questa risorsa è presente ad altezze dal suolo superiori ai 500-1000 m, ove l’effetto frenante dell’orografia è meno importante, tuttavia le tradizionali turbine eoliche non sono in grado di raggiungere tali altitudini e, pertanto, accedono solo alla parte meno conveniente della risorsa. Il recente sviluppo di tecnologie che possiamo considerare abilitanti o “enablers” per lo sfruttamento del giacimento eolico di alta quota, come i materiali polimerici ultra resistenti, le tecnologie dei compositi e la riduzione del costo del supercalcolo parallelo ci hanno consentito di sviluppare un ampio insieme di brevetti sul concetto KiteGen eolico d’alta quota e di avviare lo sviluppo industriale di questa tecnologia che consentirà di sfruttare l’immenso giacimento fornendo finalmente l’energia pulita a basso costo di cui abbiamo ravvisato l’indispensabilità ai fini dell’opportunità di ‘un’economia verde per uscire dalla crisi’.
Nell’ambito di un importante accordo con una società Saudita, siamo impegnati in un programma che prevede entro il 2014 di installare i primi impianti KiteGen e di raggiungere, entro il 2017 il traguardo del costo di produzione dell’energia di 10 euro/ MWh.
D’altro canto il detenere la priorità sui più rilevanti concetti relativi all’eolico d’alta quota comporta una pesante responsabilità in carico a KiteGen stessa e soprattutto al sistema Italia poiché i brevetti hanno scoraggiato gli investimenti anche di possibili competitori, precludendo il diritto di sfruttamento in quanto esclusiva di KiteGen, e sottraendo al mondo la via maestra per trovare rapidamente la soluzione alla crisi economica globale.
E’ dunque necessario agire in fretta, anche da parte delle istituzioni, per non vanificare i nostri sforzi nel mantenere italiana la tecnologia KiteGen. Era infatti nostra convinzione che, per l’importanza degli obbiettivi prefissati, le risorse impiegate nel progetto dovessero essere pubbliche, consentendo la più ampia democrazia ed equità nella distribuzione dei successivi frutti. Tuttavia, nonostante la partecipazione e l’ammissione al finanziamento su numerosi bandi di ricerca, le risorse pubbliche destinate al progetto non sono state mai erogate, spingendoci pertanto a ricorrere al mercato, abilitandone così una possibile futura appropriazione dei diritti di sfruttamento senza che il Paese ne abbia alcun beneficio diretto.
Siamo a chiederVi quindi il riconoscimento quale fonte rinnovabile di importanza strategica del vento troposferico e delle tecnologie, completamente italiane, che ne abilitano lo sfruttamento, mettendo queste in condizioni di parità con le altre FER.
Il percorso a nostro parere più corretto per rispondere a questa richiesta d’aiuto, perché tale è, passa per l’istituzione di una commissione tecnica, o di analogo organo istituzionale, che si avvalga delle migliori ed indipendenti competenze presenti negli enti di ricerca e negli altri soggetti che svolgono compiti strategici nel campo dell’energia, e che possa finalmente verificare ed affermare con autorità ciò che noi sappiamo già da alcuni anni, ovvero che il vento troposferico è l’unico giacimento energetico in grado di svolgere il ruolo di contrasto alla crisi energetica, economica ed ambientale assegnato alla green economy e che le conoscenze accumulate, e riconosciute dalla priorità dei nostri brevetti, in merito alle relative modalità di sfruttamento sono da considerarsi di interesse strategico per il Paese.

KiteGen in cifre
· Anno di avvio del progetto 2003
· Oltre 20 tesi di laurea dedicate, di cui una di dottorato assegnataria dell’ENI Award nel 2010
· Più di 40 brevetti “padre” registrati e riconosciuti in più di 150 Paesi del mondo ed un investimento sostenuto per la tutela del patrimonio intellettuale intorno a 2,5 Milioni di euro.
· Oltre 80 azionisti di varia natura e dimensione e sostenitori in tutto il mondo
· Numerosi premi e riconoscimenti (WREC Award 2006, tra i 20 progetti più innovativi nel Vertice di Copenhagen sul clima del 2009, chiamato a rappresentante l’“Italia degli innovatori” presso l’Expo di Shanghai 2010, etc.)
· Test di un prototipo da 30 kW nel 2006
· Test di un prototipo da 3 MW nel 2012
· Attività e costi sostenuti per la realizzazione del progetto ad oggi per un totale di circa 10 milioni di euro, di cui circa il 95% da risorse private ed il resto da fondi comunitari per R&S.
· Attività di sviluppo ed industrializzazione in corso c/o il nuovo stabilimento di S. Mauro Torinese, (1800 mq di uffici ed 8000 mq di officina) da parte di una trentina tra dipendenti e collaboratori.
· Programma di industrializzazione in corso, in collaborazione con Saudi Arabian Basic Industries Company (SABIC), finalizzato a fornire l’energia necessaria per il funzionamento del più grandeimpianto del mondo di cattura della CO2, per conto della Jubail United Petrochemical Company.

(1) http://www.assoelettrica.it/wp-content/uploads/2014/01/I-principali-dati-congiunturali-del-settoreelettrico-
italiano-1y14gennaio-dicembre2013.pdf

(2) http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate1683.html
(3) https://selectra.co.uk/sites/selectra.co.uk/files/pdf/promotion%20or%20renewable%20energies.pdf

Articolo QualEnergia: appunti tecnici

Salve a tutti, questo è il mio primo post sul blog, mi presento. Mi chiamo Antonello Cherubini e sono neolaureato in ingegneria meccanica al Politecnico di Milano.
Vorrei fare una piccola appendice tecnica all’articolo di Alessandro Codegoni apparso su QualEnergia.it all’inizio di Ottobre 2012, sperando che possa essere utile a convincere alcuni scettici.

Nell’articolo si dice “… gli aquiloni, una volta in quota, agiscono come grandi ali o vele che vanno di bolina: il vento che passa sopra la loro superficie ricurva, genera una trazione, proporzionale alla superficie del kite e al cubo della velocità del vento.”
Vorrei specificare che la trazione delle funi non è proporzionale alla velocità del vento al cubo, bensì alla velocità al quadrato. Ad essere proporzionale alla velocità al cubo è invece la potenza. Forza x Velocità = Potenza.

Per quanto riguarda invece questo passaggio dell’articolo: “…però bisogna anche dire che molti degli stessi tecnici pensano che le stime di potenza e di capacità fatte da Ippolito si ridimensioneranno molto, una volta che si passerà dalla carta al mondo reale.” vorrei dire che ho provato dispiacere nel leggere queste ultime righe perché generano molta sfiducia in un lettore non esperto ed alimentano lo scetticismo. È giusto essere scettici nella vita, ma in questo caso vorrei che ci si confrontasse sui numeri.

Provo a spiegare in parole semplici un ragionamento che per essere compreso a pieno necessita di alcuni anni di studio. In particolare la dimostrazione della formula che userò è relativamente semplice, ma comunque assolutamente inaccessibile ad un pubblico generalista. Il modello matematico del volo del Kitegen è il modello di Loyd, del 1980. È assodato nella letteratura scientifica da oramai 30 anni.
La potenza estraibile dal Kitegen è data da questo prodotto:
Potenza = 1/2* rho * v^3 * 4/27 * E^2 * Cl * A
rho è la densità dell’aria
v è la velocità del vento che soffia sulla farm
E è l’efficienza aerodinamica dell’ala Cl è il coefficiente di lift (portanza aerodinamica) del kite
A è l’area del kite

Mettiamoci dentro dei numeri conservativi e vediamo cosa esce. “Conservativo” in gergo ingegneristico significa “non ottimistico”.
rho = 1.225 Kg/m^3
A = 150 m^2
v= 12 m/s (è quella utilizzata nel rating di una gigantesca turbina Vestas v100. Ricordiamo che la velocità poi si moltiplica al cubo, quindi è il numero più importante di questa formula)
E=10 (efficienza aerodinamica = rapporto portanza/resistenza, anche questo è un numero ragionevole, se volete posso approfondire, il discorso diventa complicato)
Cl=0.65 (anche qui il discorso diventa complicato)

Potenza Kitegen prima del capacity factor = 1/2* 1.225 * 12^3 * 4/27 * 10^2 * 0.65 * 150 = 1 528 800 W ovvero abbiamo già il nostro 1.5 MW (Di confronto, la famosa gigantesca Vestas v100 arriverebbe ora a 1.8MW)
Se a questo discorso aggiungiamo un capacity factor molto maggiore rispetto all’eolico convenzionale, cioè le famose 6000 ore/anno rispetto alle circa 2000 di una turbina classica, (anche qui sto un po’ semplificando il discorso) allora vi sarà chiaro che, utilizzando criteri di rating in qualche modo equivalenti a quelli dell’eolico tradizionale, si arriva in via “non ottimistica” a dire che il Kitegen è un impianto da 3MW. Se ci fidassimo dei numeri 6000 e 2000 allora dovremmo scrivere 4.5 MW, ma limitiamoci a fidarci dei 3MW. Il risultato è già incredibile.

Trovate ulteriori dettagli nella mia tesi di laurea.

Resto a disposizione per chi volesse ulteriori chiarimenti.
antonello.cherubini@gmail.com
Antonello Cherubini

Seminar: Energia dai venti d’alta quota

comments Comments Off
By eugenio saraceno, 2012/06/12

Continua la pubblicazione dei seminar di KiteGen a cura dell’Ing.Andrea Papini.  In questo capitolo le potenzialità dello sfruttamento dei venti d’alta quota.

Per visualizzare la presentazione potrebbe essere necessario installare Adobe Shockwawe

Author: Ing.A.Papini

Valutazioni di CESI Ricerca sui sistemi KiteGen

comments Comments Off
By eugenio saraceno, 2012/06/05

Nell’ambito del programma di ricerca “Produzione di energia da fonte eolica con particolare riferimento ai sistemi offshore” CESI Ricerca (che attualmente ha assunto la denominazione ENEA – Ricerca sul Sistema Elettrico S.p.A., in forma breve ERSE S.p.A.) si è interessata al KiteGen fin dal 2008, incontrando anche il nostro team di Chieri.  A seguito di questo contatto i ricercatori del CESI hanno approfondito la tematica dell’eolico d’alta quota ed in particolare del KiteGen, giudicato il concetto più avanzato in un rapporto del 2009.  Recentemente i ricercatori del CESI hanno voluto aggiornarsi sullo stato dell’arte del KiteGen Stem visitando il test plant.  Che stiano per produrre un nuovo documento aggiornato? Se così fosse sarebbe veramente appropriato, considerato che la inedita tecnologia dell’eolico troposferico è in una tumultuosa evoluzione rendendo difficile per tutti gli interessati orientarsi fra le numerose proposte e l’affinamento della teoria sottesa.

KiteGen è più che convinta, pur essendo tra i pionieri, di aver stabilito lo stato dell’arte della tecnologia, con le due proposte Stem e Carousel. Ben venga un ente prestigioso di ricerca sul sistema elettrico come il CESI, che potrebbe trovare una metodologia oggettiva di valutazione come bussola di orientamento.

L’ambito tecnologico dell’eolico troposferico è molto articolato e pieno di sorprese migliorative ma poco intuitive. Per esempio il KiteGen Carousel e stato inizialmente descritto, nei lavori di tesi e dottorato, con delle ipotesi operative incomplete o molto semplificate, le opportunità che il concetto evidenzia affinandone la comprensione e l’analisi continuano a migliorarne le prestazioni attese.

Nel frattempo riportiamo un’elaborazione di Stefano Cianchetta sulla base di alcuni dei dati più significativi riportati nello studio. Le velocità medie rilevate durante le campagne di misurazione sono estremamente interessanti benchè le più ventose località del sud non siano incluse per insufficienza dei dati e le quote non siano elevatissime.  Si ricordi che la potenza del vento è proporzionale al cubo della velocità.

Risposta al Max Planck Institute

In questa nuova categoria ripubblichiamo articoli ed eventi precedenti alla creazione di questo blog, per i nuovi lettori che li avessero persi.

Massimo Ippolito di KiteGen risponde all’improvviso affastellarsi di voci allarmate e preoccupate per l’avvenuta segnalazione su Quale Energia di uno studio, eseguito presso il Max Planck Institute, che sembrerebbe mettere in crisi il concetto stesso di eolico di alta quota o troposferico.

Tullio de Mauro ci informa, dalle pagine del Corriere, che il 71 per cento della popolazione italiana si trova al di sotto del livello minimo di comprensione nella lettura di un testo [italiano] di media difficoltà. E poiché quindi, purtroppo, quello studio del Max Planck può essere compreso, valutato criticamente e letto tra le righe da percentuali omeopatiche di cittadini medi, chiedo perdono per la franchezza, accompagnata da un certo disagio, che mi vedo costretto a usare. Siamo infatti di fronte ad un lavoro assai criticabile, come vedremo, e francamente stupisce la disponibilità a pubblicarlo da parte di Earth System Dynamic e quella a rilanciarlo da parte di Quale Energia (che peraltro ci ha cortesemente offerto un diritto di replica).

Chi è abituato a leggere pubblicazioni scientifiche resterà sicuramente sorpreso dallo stesso titolo del paper, “Jet stream wind power as a renewable energy resource:little power, big impacts” che ne preannuncia lo spirito inspiegabilmente aggressivo. Nel paper stesso, poi, ogni paragrafo dedica uno spazio esagerato, e senza ragionamenti di supporto, a ripetere apoditticamente ciò che è stato espresso nel titolo e che viene ribadito nelle conclusioni.

I lavori, per esempio, dell’IPCC hanno abituato tutti a vedere ogni previsione prodotta da un modello corredata da una barra di incertezza. Mentre ci risulta arduo considerare un segno di serietà scientifica già la sola affermazione, contenuta nel paper Max Planck, che si possa estrarre esattamente 7,5 TW dall’atmosfera, senza offrire a chi legge delle opportune barre di errore; barre che sono ottenibili, nel ciclare il modello, variando le assunzioni nel loro ambito di plausibilità.

Stimano solamente 7,5 TW, ma a ben vedere non è affatto poco!Paradossalmente, lo studio dei ricercatori del Max Plank Institute, pur eseguito utilizzando argomenti che dimostreremo errati e pur posizionandosi, fra centinaia di altre valutazioni della risorsa vento, come la meno generosa in assoluto, è in sostanza un’ulteriore conferma della validità del KiteGen e più ampiamente dell’eolico di alta quota. Perché esso afferma che col solo eolico di alta quota si può estrarre in modo sostenibile molto di più del fabbisogno mondiale primario di energia, anche se lo afferma in polemica diretta con un recente lavoro più ottimistico di Ken Caldeira e Christina Archer,  nel quale quel “di più” è stimato in 100 volte.

Cito infatti dalla loro pubblicazione: “Our estimate for maximum sustainable extraction of kinetic energy from jet stream is 7.5 TW” (“La nostra stima per la massima e sostenibile estrazione di energia cinetica dal jet stream è di 7,5 TeraWatt”). Tuttavia tale pur pessimistico limite di 7.5 TeraWatt, della nobile e preziosa energia elettrica, è di gran lunga superiore all’intero fabbisogno umano primario! Fabbisogno che oggigiorno si attesta in 14 TW fossili, e quindi termici, dei quali molto meno della metà si trasforma in servizi energetici utili. Una centrale elettrica a carbone consuma circa il triplo di energia termica rispetto all’elettricità erogata e un’automobile brucia e disperde cinque volte l’energia termica del carburante rispetto all’energia meccanica che arriva effettivamente alle ruote. Quasi tutto il nostro uso di energia è affetto da queste ineludibili proporzioni di spreco. Di conseguenza si può affermare, senza timori di smentite, che il fabbisogno umano attuale, di potenza, è ampiamente sotto i 6TW (da moltiplicare per le 8760 ore, per ottenere il fabbisogno di energia su base annua), se fissati già nella nobile forma elettrica o meccanica anziché termica.

Potenza o energia? Questo è il problema

Entriamo ora nel merito del lavoro.

Chi si occupa professionalmente di energia condivide con me la sensazione oppressiva del dover subire la continua e diffusa confusione fra i concetti distinti di potenza e di energia. E anche a pag 202 del paper in questione l’intero primo paragrafo mescola ripetutamente ed ineffabilmente i due concetti. Qui un esempio: ” If we take the present global energy demand of 17 TW of 2010 (EIA, 2010), then this estimate would imply that 1700 TW of wind power can be sustainably extracted from jet streams. However, this estimate is almost twice the value of the total wind power of 900 TW (Lorenz, 1955; Li et al., 2007; Kleidon et al., 2003;Kleidon, 2010) that is associated with all winds within the global atmosphere.

L’attuale domanda di energia è, secondo gli autori, di 17 TW, che però misurano una potenza, chiaro (ma solo agli addetti ai lavori) che volessero intendere la potenza media assorbita dalle utenze planetarie durante un anno, ma espresso con una superficialità che non è ammissibile per uno studente del liceo durante un’interrogazione, figurarsi per un team di ricercatori, il quale avrà peraltro avuto modo di rileggere più volte il lavoro prima di rilasciarlo. Inoltre affermare che la potenza totale del vento è di 900 TW è una forzatura del concetto fisico: non esiste potenza in un fluido, semmai esso è dotato di energia. Al limite, si potrebbe provare a valutare l’energia posseduta dal regime stazionario atmosferico, che però si misura in migliaia di TWh (TeraWattOra). Quei 900 TW, se mai, potrebbero essere la potenza che il sole trasferisce all’atmosfera e che si trasforma in forma cinetica oppure la potenza che l’atmosfera perde continuamente in calore con l’interazione con il suolo e nei fenomeni di attrito tra i vari flussi. Dovrebbe bastare questo per riconsiderare che esistono molti approcci di maggiore qualità e certamente di superiore interesse sul tema:

ENERGIA

Brunt(1939) calcola in 100PWh l’energia cinetica totale dell’atmosfera.

POTENZA DISSIPATA IN ATMOSFERA

Gustavson (1979) calcola 3600TW di dissipazione media totale, (inoltre conferma i dati di Brunt),

Gustavson (1979) 1200TW di dissipazione entro il boundary layer con l’orografia del territorio e il trasferimento di energia ai mari,

Lorenz (1967) 1270TW, Skinner (1986) 350TW, Peixoto and Oort (1992) 768TW,  Sorensen (1979 e 2004) 1200TW, Keith et al. (2004) 522TW, Lu et. al., (2009) 340TW, Wang and Prinn (2010) 860TW.

Le differenze fra i risultati di cui sopra sono motivabili da analisi che parzializzano su flussi ordinati, puramente orizzontali e potenzialmente sfruttabili, ma sostanzialmente tutti gli autori sono abbastanza concordi sugli ordini di grandezza.

SFRUTTAMENTO DELLA RISORSA

Gustavson (1979) ritiene che possano essere sfruttati 130 TW – il 10% di ciò che viene dissipato naturalmente – con già un’espressa attenzione al clima da parte dell’autore; che per me rimane il più credibile, colui che ha detto e capito tutto ciò che c’era da dire e capire. Un altro ottimo lavoro è quello di Sorensen, che si sovrappone quasi perfettamente a quello di Gustavson

Tornando alla confusione tra potenza ed energia sul paper di L. M. Miller, F. Gans and A. Kleidon , bisogna essere veramente indulgenti ed approssimativi per accettare queste formulazioni :

<<Archer and Caldeira (2009) estimated the potential of jet stream wind power as “…roughly100 times the global energy demand”. If we take the present global energy demand of 17TW of 2010 (EIA, 2010), then this estimate would imply that 1700TW of wind power can be sustainably extracted from jet streams. However, this estimate is almost twice the value of the total wind power of 900TW(Lorenz, 1955; Li et al., 2007; Kleidon et al., 2003; Kleidon, 2010) that is associated with all winds within the global atmosphere.

Here we resolve this contradiction between the energy that can maximally extracted from the jet stream Sect. 4 in terms of differences in velocity and dissipation rates, the limit on how much kinetic energy can maximally be extracted, atmospheric energetics. The contradiction originates from the erroneous assumption that the high wind speeds of the jet streams result from a strong power source. It is well known in meteorology that jet streams reflect quasi-geostrophic flow, that is, the high wind speeds result from the near absence of friction and not from a strong power source.>>

1) Vi si “accusano” artificiosamente Archer e Caldeira di dire che 1700 TW sono sostenibili, mentre il vero significato è che essendoci un potenziale pari a 100 volte la domanda globale, l’estrazione risulta particolarmente copiosa anche da una singola geolocalizzazione, e che per ora possiamo lasciare passare indisturbato ciò che non raccogliamo. Inoltre la stima di Archer e Caldeira non si riferisce ai soli jet stream.

2) Vi si cita un TOTAL WIND POWER, associato a tutti i venti dell’atmosfera, e non un dato di potenza media, mediata o al limite di TW anno; il che è un errore grave.

3) Vi si indica una massima energia che può essere estratta; cosa che non ha alcun significato se non con un senso molto traslato di energia, ovvero di potenza.

4) Vi si indica la massima energia cinetica che può essere estratta; cosa che avrebbe un significato solo se vi fosse stato aggiunta, anche solo lessicalmente, una base di tempo.

5) Inoltre l’assenza di frizione è un falso. Infatti sappiamo che in atmosfera si perdono globalmente 7W al mq, di cui 2,5 W mq sono la parte eventualmente a disposizione dell’eolico (da non confondere con i 700W al mq medi, disponibili localmente, quale sommatoria di raccolta nel grande cardioide sopravvento ai generatori).

Ragionando attentamente, l’intento degli autori di forzare insieme diversi concetti, anche al rischio di apparire superficiali, appare poco chiaro, e sicuramente poco scientifico dando peraltro adito al sospetto di voler attaccare ad ogni costo il concetto di eolico di alta quota.

Ma in realtà nessuno di buon senso ha mai pensato di sfruttare direttamente il Jet Stream

Il Jet Stream alimenta immagini e sogni sproporzionati. Per cui si nota spesso, quando si tratta di energia eolica, una sorta di prouderie intellettuale a volerne forzatamente dissertare.
Effettivamente la velocità media del vento a quelle quote è di 90 nodi medi, un equivalente di circa 16 kW al metro quadrato di fronte vento, con dei picchi frequenti di oltre 100 kW al metro quadro. Un’ipotetica ventolina di soli 20 cm di diametro, immersa nel jet stream, potrebbe davvero alimentare abbondantemente un’abitazione tutto l’anno, sia di giorno che di notte.

Però una macchina che si immerga nel pieno del Jet Stream, a 9000 metri di altezza, è difficile perfino da immaginare. Solo fantasie tecnologicamente immature possono ipotizzare di sfruttare direttamente quel possente quanto ingestibile flusso. L’eolico di alta quota, in tutte le sue forme, si indirizza invece al flusso residuale, quello che si propaga dai jet streams e scende a quote relativamente più basse ed è destinato a frangersi e disperdere energia in calore tra le cime delle montagne, le foreste e l’orografia del territorio. Si deve pensare che gli estensori del paper non lo sapessero ? Cioè che criticassero una tecnologia pur ignorandone perfino le basi? Trattasi di un dubbio lecito e nel contempo alquanto inquietante.

E ancora, i lavori di Christina Archer e Ken Caldeira , che sono citati nello studio a preteso sostegno, non si concentrano invece affatto sull’ipotesi di sfruttamento del jet stream. L’atlante dei venti di alta quota che essi hanno pubblicato prende infatti in esame tutte le latitudini e longitudini alle varie altezze; per cui è inaccettabile che sia attribuito loro una focalizzazione esclusiva sul jet stream.

La magia insita nelle macchine che intendono sfruttare l’eolico troposferico è proprio la possibilità di modulare l’altezza operativa in modo da trovare sempre una brezza non troppo forte né troppo debole, col fine primario di fare concorrenza alla stabilità ed alla costanza delle centrali termiche, che convertono l’energia fossile provvidenzialmente accumulata nei milioni di anni dal nostro pianeta.

L’eolico di alta quota presenta inoltre il vantaggio di trovare concentrata questa energia approssimandosi al regime stazionario atmosferico; al quale si può accedere praticamente da qualunque luogo della superficie terrestre, senza richiedere di dispiegare centinaia di migliaia di installazioni sui territori. Ciò che c’è di positivo nel fatto di avere quella enorme risorsa energetica accumulata nei jet stream, non può certamente essere l’immaturo ed inutile proposito di estrarne migliaia di TW, ma è la consapevolezza di poter cogliere il vantaggio di una macchina che può attingere ovunque dalle perdite di quel serbatoio energetico per soddisfare auspicabili specifiche di funzionamento e di potenza erogabile.

Il limite di Betz

A pagina 206 del paper è citata la legge di Betz ed il suo limite al 59,3%. E le formulazioni matematiche di Betz descrivono effettivamente la metodologia per frenare al meglio il flusso del vento al fine di estrarre energia. Esse permettono cioè di capire che il vento non è da sfruttare a fondo perché deve fluire attraverso la macchina eolica senza perdervi tutta la velocità e l’energia posseduta. Condizione indispensabile per ottenere il migliore risultato.

Però le leggi di Betz sono preziose per le turbine eoliche, che hanno un fronte vento intercettabile limitato dalla dimensione delle pale in rotazione; per cui il vento elaborato mantiene in ogni caso l’energia residua che non viene convertita dalla macchina. Nel caso invece dell’eolico troposferico di tipo ground-gen (generatore a terra), quelle leggi perdono gran parte della loro importanza poiché il fronte vento intercettabile è decine di volte superiore a quello delle pale eoliche e quindi la velocità del vento viene ridotta solo leggermente.
Gli autori del paper forzano il cosiddetto limite di Betz, con l’intento scoperto di affermare che la massima potenza cinetica estraibile è 7,5 TW e che quindi, a causa del limite di Betz, la potenza elettrica è di 4,5 TW. Ma questo non è vero perché, se la potenza cinetica estraibile fosse effettivamente limitata a 7,5 TW, le macchine eoliche dovrebbero elaborare vento per 12 TW lasciando fluire preservati 4,5 TW, assolvendo in pieno alla specifica di sottrarre solo 7,5 TW cinetici.

Modelli matematici

Spesso si sente dire che la scienza e gli scienziati sono divisi nel decifrare vari argomenti, come per esempio succede per i modelli che descrivono il caos climatico e la responsabilità antropica.
Molti politici non vogliono più sentir parlare di modelli, probabilmente perché hanno assistito a dimostrazioni di tesi opposte brandite con altrettanti modelli a supporto. Ebbene, è un vero peccato poiché l’essenza della politica degli statisti dovrebbe essere quella di prevedere il futuro con sufficiente anticipo per reagire correttamente.

Penso di aver focalizzato abbastanza chiaramente il principale fattore comune dei guasti cognitivi e comunicativi su molti argomenti di una certa complessità. Si tratta di differenti percezioni e interpretazioni dei fenomeni dinamici e retroattivi. Posso anzi dire che si nota una netta linea di demarcazione tra chi studia, percepisce ed è consapevole di fenomenologie multivariate con il loro corredo di forzanti e retroattività, e chi percepisce la scienza ed i suoi fenomeni con rappresentazioni statiche o semplici proiezioni tendenziali, come succede nel mainstream degli economisti o dei demografi.. Purtroppo, è possibile confezionare i cosiddetti modelli previsionali con entrambe quelle mentalità, ma con ben diversi risultati qualitativi.

Il lavoro di L. M. Miller, F. Gans and A. Kleidon rivela appunto una scarsa conoscenza della dinamica dei sistemi. Infatti, pur dichiarando di aver utilizzato un modello matematico ad elementi finiti, lo hanno applicato spalmando ovunque e forzatamente un freno fluidico quale emulazione di macchine eoliche di alta quota. Un errore marchiano, che risulta evidente pensando che le macchine eoliche devono avere necessariamente una geolocalizzazione, mentre tale aspetto è stato da loro completamente ignorato,
Se i potenti flussi di vento di alta quota sono così mobili per quasi mancanza di attrito, un eventuale ostacolo puntuale verrebbe in buona parte aggirato, creando scenari dinamici inediti, ma modellizzabili con approcci più rigorosi.

Qui ho riprodotto un’immagine a dimostrazione che, mentre scrivevo, su Inghilterra, Francia, Italia e fino alla Grecia era presente un vento di oltre 200 km/h. Come si può notare, questi flussi accelerano, frenano e deviano, coinvolgendo immense masse d’aria a grande velocità e con grandi accelerazioni, in evoluzioni che in poche ore presentano configurazioni completamente differenti e grandi scambi e dissipazioni di energia.

Basti pensare all’energia veicolata da un vento come il foehn, frequente in Piemonte, che nel mentre deposita in scioltezza miliardi di tonnellate di neve sulle Alpi, riesce in pieno inverno ad elevare la temperatura di una intera regione a livelli estivi.

Per dare un’indicazione quantitativa, risultante dall’immagine, l’Italia era investita da una potenza eolica di oltre 200 TW, pari a circa 15 volte il fabbisogno mondiale primario. Qui posso appropriatamente parlare di potenza perché ho definito un’area (il fronte vento sulla penisola italiana) ed un riferimento temporale (l’istante cui l’immagine si riferisce). Lo studio di queste dinamiche atmosferiche emblematicamente ripropone le difficoltà citate. Eppure c’è chi pensa di poter mettere giù una manciata di equazioni, che a gamba tesa intervengono in un modello; e pretende di ottenere risultati sensati.
Ipotizzare un limite di sfruttamento di pochi TW rappresenta per ora un più che comodo, ampio e direi comunque condivisibile obiettivo, fino a quando si potrà confermare, con lavori di modellizzazione rigorosi, che più si sfrutta il vento troposferico e più vento troposferico sarà disponibile. Una risorsa forse autofertilizzante, insomma.

L’anticipata sottrazione di energia cinetica da parte delle macchine eoliche, infatti, fa abbassare la temperatura anche di parecchi centesimi di grado nei cardioidi sottovento dell’atmosfera. E i differenziali termici, insieme al contenuto di vapore, sono il grande motore dei venti.
La maggior parte dello sfruttamento, per ragioni geografiche e di popolazione, insisterà sulle celle di circolazione atmosferica di Ferrel, che rappresentano un colossale corto circuito energetico tra le celle di Hadley e le celle Polari. Sottrarre energia a queste celle di circolazione atmosferica può significare vedersela restituire integralmente dalle dinamiche circostanti.

Le Istituzioni, dove sono?

Dopo questa indispensabile critica del lavoro proveniente dal Max Plank Institute, finalmente si condividono gli elementi per affermare, senza apparire esagerati, che dalla sola Italia, grazie alla sua posizione trasversale ai grandi flussi pseudo geostrofici, si potrebbe facilmente estrarre 1 TW continuo di potenza, ovvero oltre 8000 TWh di energia annui. I quali, trasformati prosaicamente in denaro, equivarrebbero ad una produzione netta di ricchezza puramente endogena stimabile in 800 miliardi di euro l’anno…. Roba da far impallidire tutte le inique manovre finanziarie che i governanti ci stanno imponendo.

Qualche decina di grandi macchine eoliche o kitegen farms, distribuite da Nord a Sud, farebbero tutto il lavoro senza preoccupazioni di intermittenza, e a forse nemmeno un decimo del costo che avrebbe avuto il nostro nucleare.

Il fatto di scrivere e dimostrare percorsi progettuali credibili ci ha procurato la promessa (ma solo quella) di finanziamenti pubblici per un totale complessivo di 78 milioni. Abbiamo partecipato ai bandi per la ricerca e l’innovazione, e le commissioni si sono sempre entusiasmate del progetto; al punto che molti valutatori tecnici e strategici si sono sentiti in dovere di complimentarsi personalmente col sottoscritto. Mi ricordo di Zorzoli, Clini, Silvestrini, Degli Espinosa, Pistorio… Poi, regolarmente, i fondi sono stati bloccati e i responsabili trombati; oppure la pratica è finita in mano a burocrati lunari. Degli Espinosa e in particolare Pistorio all’epoca di “Industria2015” si erano convinti saggiamente, che almeno un KiteGen, realizzato su scala industriale, bisognasse assolutamente vederlo.

Consumare copiosamente energia da fonte rinnovabile è l’unico ed inedito motore primario e credibile per l’economia del futuro, ma sembra che un sentimento di impotenza e nichilismo imperino e che chi potrebbe darci una mano preferisca vedere il collasso.

Massimo Ippolito

Il ciclo dell’energia in atmosfera e la disponibilità di energia dal vento

Il Sole irradia sulla terra una potenza media di 1370 W/mq, tale valore è chiamato Costante Solare. Il mezzo attraverso il quale il nostro pianeta riceve l’energia è l’atmosfera, uno strato di gas spesso alcune decine di km. Tenendo conto che la radiazione della costante solare è riferita ad un piano tangente alla superficie sferica terrestre (che misura 510 milioni di km quadrati) si può assumere che la potenza entrante nell’atmosfera è di 350 W/mq (1/4 circa) ovvero 178500 TW su tutta la superficie terrestre.   Considerando che la potenza media richiesta da tutte le utenze terrestri è di circa 16 TW (12 GTOE/Anno – Fonte IEA 2011) si vede bene come la radiazione solare sia ben oltre 10000 volte il fabbisogno umano attuale.  Una frazione del 30% di tale radiazione è immediatamente riflessa dall’atmosfera e reinviata nello spazio.  Dei circa 230 W/mq rimanenti gran parte viene trasformata in calore ed il resto è coinvolto in processi di evaporazione. Una parte si trasforma in energia meccanica (venti). Infine, per mantenere l’equilibrio energetico, il pianeta reirradia tutto verso lo spazio. Le tecnologie per lo sfruttamento dell’energia solare utilizzano la radiazione sia diretta che diffusa (solare fotovoltaico) oppure l’energia meccanica dei venti.
Per fissare le idee sulle potenzialità dei venti si esamini la figura qui riportata, tratta da G.Parolini – Considerazioni sui principali elementi che determinano l’ambiente sulla superficie della terra – Sistema, Roma, 1967. La media terrestre di 230 W/mq equivale a 230 Wh * 24 * 365 = 2 MWh /anno per metro quadro di energia teoricamente disponibile.
Sempre con riferimento alla figura si nota che una piccola parte della radiazione solare, 2W/mq è costantemente trasformata in energia cinetica ovvero vento e, essendo un regime stazionario, costantemente dissipata in calore mediante attriti contro la superficie terrestre e tra particelle di aria.  Un semplice calcolo consente di valutare a livello globale in 1020 TW tale dissipazione, anche questa è una quantità molto superiore ai 16 TW che ci sono necessari.  Inoltre la riserva di energia meccanica, cioè l’energia cinetica di tutte le particelle di atmosfera mosse dai venti (140 wh/mq) è superiore ai 70.000 TWh, circa 6 mesi di consumi energetici planetari ed è continuamente disponibile.  Da tale giacimento è estratta l’energia eolica. La tecnologia delle torri eoliche o windmill non consente di accedere che ad una piccola percentuale di questa energia, quella che si trova nei primi 2-300 metri dal suolo.  L’eolico troposferico, o di alta quota, di cui il KiteGen è il più avanzato progetto in fase di industrializzazione, si propone, salendo fino a quote di 2000 metri ed oltre, di accedere a frazioni sempre più consistenti di questa immensa quantità di nobile energia meccanica (nobile perchè trasformabile in energia elettrica con alte rese)
Ho volutamente tratto lo schema da un testo abbastanza datato, uno dei meno generosi nella stima della frazione di potenza solare che alimenta i venti e dei più conservativi nella stima dell’energia cinetica stazionaria dell’atmosfera per mostrare che anche le stime meno generose rivelano un potenziale energetico immenso.   Esistono studi più accurati che ci permettono di considerare valori ancora più grandi, fino a 3600 TW di potenza dissipata totalmente dai venti atmosferici (Gustavson 1979).  Fin dal 1939 Brunt aveva stimato 100.000 TWh di energia cinetica totale.  Le iniziative concrete sull’eolico troposferico sono relativamente recenti, l’interesse scientifico sull’argomento sta crescendo ed il numero di articoli e studi cresce, ma con esso cresce anche l’interesse economico che può influenzare  in positivo o in negativo le varie stime; è quindi importante considerare anche studi fatti quando ancora non si pensava concretamente a realizzare impianti eolici troposferici.

NASA Langley Research Center e KiteGen

kitegen on NASA video
NASA LaRC Airborne Wind Energy Harvesting

Nasa on You Tube

Scritto da Massimo Ippolito e Andrea Papini

Mark Moore e David North del Nasa Langley Research Center mostrano come stanno ripercorrendo le varie soluzioni architetturali per implementare l’eolico troposferico.

David North inoltre annuncia di voler sperimentare la soluzione mono-fune con gli attuatori di assetto a bordo ala.

Benchè il Carosello ed in una certa misura lo Stem siano architetture indifferenti al numero di funi, cogliamo l’occasione per ricordare le ragioni che ci hanno portato KiteGen a concentrarsi su un sistema basato su due funi.

1) la sicurezza dei sistemi doppi.

Un sistema a doppio cavo ha un fattore di sicurezza estremamente più elevato di un sistema a cavo singolo, e permette in qualsiasi condizione un rientro veloce dell’ala.

I doppi moto-alternatori e tamburi si dividono il carico quindi sono circa la metà come dimensionamento e sono più maneggevoli e disponibili sul mercato

2) L’opportunità di implementare con le due funi la scivolata d’ala con ali concepite per un volo bimodale.

Con un cavo singolo  la discesa deve avvenire necessariamente  variando l’angolo di attacco dell’ala e portandosi possibilmente sul bordo della finestra di potenza del vento, strategie già percorse da KiteGen nel 2006 anche con i due cavi.

il recupero della fune crea vento apparente che restituisce portanza all’ala rallentando molto la manovra di rientro, con anche l’effetto indesiderato di dover fornire potenza ai tamburi per il riavvolgimento, mentre con le due funi abbiamo dimostrato di poter mettere l’ala in bandiera minimizzazndo tempi di ciclo e gli autoconsumi di energia.

3) La velocità di attuazione da remoto

Il controllo con un’ala molto distante mediante i cavi  non soffre di ritardi apprezzabili, la forza sui cavi, e quindi anche i comandi, si muovono alla velocità del suono nel : “Dyneema® SK75, con E = 107 GPa , ρ = 0.97 kg/dm3 si ricava = 10.502 m/s”, ovvero circa 30 volte la velocità del suono in aria
Esso costituisce un ritardo di attuazione trascurabile che permette di escludere che vi sia un vantaggio ad attuare in prossimità dell’ala.

4) Resistenza aerodinamica delle funi in volo

A parità di resistenza alla trazione totale, le due funi presentano una resistenza aerodinamica nel volo che è maggiore di radice 2 rispetto ad un sistema a singola fune. Ma le funi  possono facilmente essere rese aerodinamicamente inifluenti (brevetto KiteGen), in modo da escludere il drag tra i criteri di scelta delle stesse.

5) Avvolgimento su se stessi dei cavi, twist dei cavi

Il contatore di twist comandato dalla strumentazione di bordo ala funziona molto bene e sebbene il sistema funzioni ancora con 10 twist, il controllo può passare brevemente da i lemniscati agli ellissi per ripristinare l’allineamento corretto.

6) Forze per  l’attuazione della direzione di volo dell’ala

Fino a quando si tratta di dimostratori da poche decine di kW l’attuazione a bordo ala può essere alimentata da accumulatori o da sistemi di generazione ausiliari. Quando invece si raggiungono i MW le attuazioni diventano impegnative sia come resistenza, peso ed energia necessaria per alimentarli.

Gli attuatori in volo, è presumibile, che possano solo essere controllati ed alimentati da un cavo elettrico intrecciato all’interno del cavo polimerico di trazione, riaprendo tutte le questioni di peso, costo, interfacciamento e sensibilità alle scariche atmosferiche .

Gli attuatori volanti dovranno poi essere integrati in qualche modo nell’ala per limitare l’effetto drag sia per l’effetto della forza d’inerzia che sbilancia la vela nelle manovre.

Panorama Theme by Themocracy