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Abstract

This thesis is concerned with the development of an innovative technology of high–
altitude wind energy generation and with the investigation of the related advanced au-
tomatic control techniques. Indeed, the problems posed by the actual energy situation are
among the most urgent challenges that have to be faced today, on a global scale. One of
the key points to reduce the world dependance on fossil fuels and the emissions of green-
house gases is the use of a suitable combination of alternative and green energy sources.
Renewable energies like hydropower, biomass, wind, solar and geothermal could meet
the whole global energy needs, with minor environmental impact in terms of pollution
and global warming. However, they are not economically competitive without incen-
tives, mainly due to the high costs of the related technologies, their discontinuous and
nonuniform availability and the low generated power density per unit area. Focusing the
attention on wind energy, recent studies showed that there is enough potential in the to-
tal world wind power to sustain the global needs. Nevertheless, such energy can not be
harvested by the actual technology, based on wind towers, which has nearly reached its
economical and technological limits. The first part of this dissertation is aimed at evaluat-
ing the potential of an innovative high–altitude wind energy technology to overcome some
of these limitations. In particular, a class of generators denoted as KiteGen is considered,
which exploits the aerodynamical forces generated by the flight of tethered airfoils to
produce electric energy. Numerical simulations, theoretical studies, control optimization,
prototype experiments and wind data analyses are employed to show that the KiteGen
technology, capturing the energy of wind at higher elevation than the actual wind towers,
has the potential of generating renewable energy available in large quantities almost ev-
erywhere, with a cost even lower than that of fossil energy.
Though the idea of exploiting tethered airfoils to generate energy is not new, it is practi-
cable today thanks to recent advancements in several science and engineering fields like
materials, aerodynamics, mechatronics and control theory. In particular, the latter is of
paramount importance in KiteGen technology, since the system to be controlled is non-
linear, open loop unstable, subject to operational constraints and with relatively fast dy-
namics. Nonlinear Model Predictive Control techniques offer a powerful tool to deal with
this problems, since they allow to stabilize and control nonlinear systems while explicitly
taking into account state and input constraints. However, an efficient implementation is
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needed, since the computation of the control input, which requires the real–time solution
of a constrained optimization problem, can not be performed at the employed “fast” sam-
pling rate. This issue motivates the research efforts devoted in the last decade to devise
more efficient implementations of predictive controllers. Among the possible solutions
proposed in the literature, in this thesis Set Membership theory is employed to derive
off–line a computationally efficient approximated control law, to be implemented on–line
instead of solving the optimization. The second part of this thesis investigates the method-
ological aspects of such a control strategy. Theoretical results regarding guaranteed ap-
proximation accuracy, closed loop stability and performance and constraint satisfaction
are obtained. Moreover, optimal and suboptimal approximation techniques are derived,
allowing to achieve a tradeoff between computational efficiency, approximation accuracy
and memory requirements. The effectiveness of the developed techniques is tested, be-
sides the KiteGen application, on several numerical and practical examples.
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Part I

High–altitude wind energy generation
using controlled airfoils





Chapter 1

Introduction

The problem of sustainable energy generation is one of the most urgent challenges that
mankind is facing today. On the one hand, the world energy consumption is continuously
growing, mainly due to the development of non–OECD (Organization for Economic Co–
operation and Development, see Appendix A) countries, and an increase of about 45–50%
in energy consumption, with respect to the actual value, is estimated for year 2030 [1, 2].
On the other hand, the problems related to the actual and projected distribution of energy
production among the different sources are evident and documented by many studies (see
e.g. [3]). Most of the global energy needs are actually covered by fossil sources (i.e. oil,
coal and natural gas), accounting for about 81% of the global primary energy demand in
2006 [1]. Fossil sources are supplied by few producer countries [1, 2], which own limited
reservoirs, and the average cost of energy obtained from such sources is continuously in-
creasing due to the increasing demand, related to the rapid economy growth of the highly
populated non–OECD countries [3]. Moreover, the negative effects of energy generation
from fossil sources on global warming and climate change, due to excessive carbon diox-
ide emissions, and the negative impact of fossil energy on the environment are recognized
worldwide and lead to additional indirect costs [3, 4]. Such a situation gives rise to serious
geopolitical and economical problems, affecting almost all of the world’s countries.
One of the key points to solve these issues is the use of a suitable combination of alter-
native and renewable energy sources. In early 2007, the European Union (EU) heads of
state endorsed an integrated energy/climate change plan that addresses the issues of en-
ergy supply, climate change and industrial development [5]. One of the points of the plan
is the target of increasing the proportion of renewable energies in the EU energy mix to
20% by year 2020 (starting from about 8% of 2006, [1]). However, the actual renewable
technologies (hydropower, solar, wind, biomass, geothermal) seem to have little poten-
tial to reach this target. Indeed, according to the projections given in [2], if no political
and economical measures will be adopted only about 8.9% of the energy consumption in
European countries will be supplied by renewable energies in 2020. A fairly more op-
timistic estimate is given in [1], with about 13% of primary energy demand covered by
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renewables in EU in 2020. Similar estimates are obtained for all of the OECD countries,
while for non–OECD countries according to [2] it is expected that a constant fraction of
about 7.5% of the whole energy consumption will be supplied by renewable energies for
the next 20 years. Excluding hydropower (which is not likely to increase substantially
in the future, because most major sites are already being exploited or are unavailable for
technological and/or environmental reasons), the main issues that hamper the growth of
renewable energies are the high investment costs of the related technologies, their non–
uniform availability and the low generated power density per unit area.
Focusing the attention on wind energy, it is interesting to note that recent studies [6]
showed that by exploiting 20% of the global land sites of “class 3” or more (i.e. with av-
erage wind speed greater than 6.9 m/s at 80 m above the ground), the entire world’s energy
demand could be supplied. However, such potential can not be harvested with competitive
costs by the actual wind technology, based on wind towers which require heavy founda-
tions and huge blades, with massive investments, and have a limited operating height of
about 150 meters from the ground, where wind flows are weaker and more variable. A
comprehensive overview of the present wind technology is given in [7], where it is also
pointed out that no dramatic improvement is expected in this field. All the mentioned
issues lead to wind energy production costs that are higher than those of fossil sources.
Therefore, a quantum leap would be needed in wind technology to overcome the present
limits and boost its application, providing green energy with competitive costs with re-
spect to those of the actual fossil sources, thus no more requiring economic incentives.
Such a breakthrough in wind energy generation can be realized by capturing high–altitude
wind power. A possible viable approach is to use airfoils (like power kites used for surf-
ing or sailing), linked to the ground with one or more cables. The latter are employed to
control the airfoil flight and to convert the aerodynamical forces into mechanical and elec-
trical power, using suitable rotating mechanisms and electric generators kept at ground
level. Such airfoils are able to exploit wind flows at higher altitudes (up to 1000 m) than
those of wind towers. At such elevations, stronger and more constant wind can be found
basically everywhere in the world: thus, this technology can be used in a much larger
number of locations. The potential of this concept has been theoretically investigated
almost 30 years ago [8], showing that if the airfoils are driven to fly in “crosswind” con-
ditions, the resulting aerodynamical forces can generate surprisingly high power values.
However, only in recent years more intensive studies have been carried out by quite few
research groups in the world, to deeply investigate this idea from the theoretical, techno-
logical and experimental point of views. In particular, at Politecnico di Torino (Italy), a
project named KiteGen started in 2006, aimed at studying and develop the technology of
high–altitude wind energy using controlled airfoils.
Part I of this dissertation collects all the main advances of the project KiteGen. The out-
come of the theoretical and numerical analyses performed in the last three years (2006–
2008) and presented in this thesis, together with the results of the first experimental tests,
indicate that high–altitude wind energy has the potential to overcome the limits of the

4



1.1 – Global energy situation

actual wind turbines and to generate large quantities of renewable energy, available prac-
tically everywhere in the world, with competitive costs with respect to fossil sources.
Such results have been partly published in [9, 10, 11, 12, 13, 14].
The remaining of this Chapter is organized as follows. Section 1.1 gives a concise
overview of the actual and projected global energy situations, while Section 1.2 briefly
resumes the main characteristics of the actual wind power technology and the existing
concepts of high–altitude wind generators. Finally, Section 1.3 states the contributions
given in this Part of the thesis.

1.1 Global energy situation

This Section resumes the latest available data, related to 2006, as well as future projec-
tions, until 2030, of the global marketed energy consumption. Indeed, to perform an ac-
curate and deep study of the actual situation of global energy and of the projected scenario
is an hard task, outside the scope of this dissertation, and only some concise analyses are
reported, to better describe the context, the motivations and the potential of the presented
research. Since the KiteGen project regards mainly the field of electric energy produc-
tion, particular attention is given to the distribution, among the different sources, of the
global energy consumption for electricity generation. Moreover, the actual and projected
values of energy–related carbon dioxide emissions, by source and by end–use sector, are
also resumed, since the potential impact of high–altitude wind energy involves also the
abatement of such a greenhouse gas.

1.1.1 Actual global energy situation

Information on the global energy panorama in the last years can be found in several
sources (see e.g. [1, 2, 15, 16]), in which the data on energy consumption are usually
grouped by fuel, by geographical region and by end–use sector. Most studies consider
both the Total Primary Energy Demand (TPED), i.e. the demand of raw fuels and other
forms of energy that have not been subjected to any conversion or transformation process,
and the Total Final Consumption (TFC), which embraces the consumption of “refined”
energy sources in the various end–use sectors like transportation, industry, residential,
etc.. The analyses are mostly focused on fossil energy (i.e. oil, coal and natural gas),
which accounts for about 81% of TPED and 59% of TFC (according to [1]). The col-
lected data are usually put into relation with demographic and economic indicators like
population and Gross Domestic Product (GDP) growth, which are considered to be the
most influential factors on energy consumption.
Although some discrepancy (of the order of few percent points) can be noticed in the data
given by the different sources, the actual global energy situation is quite clear and it is
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now briefly resumed, using the data related to 2006. Table 1.1 shows the world total pri-
mary energy demand in 2006 by region1 and by source, expressed in trillions of MJ. The
considered sources are the three main categories of fossil fuels (i.e. oil, coal and natural
gas), nuclear power, hydro, biomass and waste and “other” sources, which include all the
non–hydro renewable sources, i.e. solar, geothermal, wind, tide and wave energy2. Fig-
ures 1.1 and 1.2 show the percent distribution of energy consumption by source and by
region respectively. It can be clearly noted that more than 80% of TPED is covered by

Table 1.1. World total primary energy demand in 2006 by region and source
(trillion MJ). Data taken from [1].

Region Fossil sources Nuclear Biomass
and waste

Hydro Other Total

Oil Natural
gas

Coal

OECD North
America

47.43 26.33 24.57 10.10 4.22 2.42 0.75 115.85

OECD Europe 29.14 18.76 13.86 10.67 3.93 1.71 0.75 78.83
OECD Pacific 15.91 5.56 9.25 4.94 0.67 0.46 0.25 37.05
Total OECD 92.48 50.66 47.69 25.70 8.83 4.60 1.75 231.74
Europe and
Eurasia

9.75 23.02 9.00 3.14 0.79 1.09 0.04 46.85

Asia 31.56 9.83 65.60 1.25 23.61 2.42 0.79 135.11
Middle East 11.72 9.58 0.37 0 0.04 0.08 0.04 21.85
Africa 5.52 3.22 4.31 0.12 12.18 0.33 0.04 25.75
Latin America 9.92 4.44 0.92 0.25 4.22 2.34 0.08 22.19
Total Non–
OECD

68.49 50.11 80.21 4.77 40.86 6.28 1.00 251.75

World 160.98 100.77 127.90 30.47 49.69 10.88 2.76 483.49

fossil sources and that almost 50% of TPED is related to OECD countries, whose popula-
tion, about 1.17 109 people, correspond to only about 18% of the world total population.
Thus, the distribution of energy demand among the various sources and over the world’s
regions is all but well balanced. Moreover, the production of fossil fuels is concentrated
in few countries, since for example about 42% of oil, which covers about 15% of TPED,
is produced in OPEC3 countries and about 22% of natural gas (i.e. about 5% of TPED) is

1The considered regions are: OECD North America, OECD Europe , OECD Pacific, Europe and Eura-
sia, Asia, Middle East, Africa and Latin America. For a complete list of the countries included in each
region, see Appendix A.

2For a more complete definition of the considered energy sources, see Appendix B
3Organization of the Petroleum Exporting Countries. Includes Algeria, Angola, Ecuador, Indonesia,

Iran, Iraq, Kuwait, Libya, Nigeria, Qatar, Saudi Arabia, the United Arab Emirates and Venezuela
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Coal: 26%

Nuclear: 6%

Natural gas: 21%

Biomass: 10%Hydro: 2%

Other: 1%

Oil: 34%

Figure 1.1. Percent distribution of the total primary energy demand by source in 2006.
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Figure 1.2. Percent distribution of the total primary energy demand by region in 2006.

supplied by Russia.
As regards electric power generation, Table 1.2 shows the global electricity produced in
2006 by region and by source; the related distribution among the various fuels is depicted
in Figure 1.3. OECD countries produce about 55% of the total electricity, using mainly
coal (38%), natural gas (20%) and nuclear power (22%). Non–OECD countries generate
the remaining 45% of global electricity, relying mainly on coal (45%), natural gas and
hydro (20% each). Thus fossil sources, particularly coal, account for 67% of the global
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Table 1.2. World total electricity generated in 2006 by region and source (trillion
MJ). Data taken from [1].

Source OECD Non–OECD World
Oil 1.50 2.44 3.94
Natural gas 7.55 6.15 13.7
Coal 14.15 13.77 27.92
Nuclear 8.48 1.57 10.05
Biomass and waste 0.73 0.12 0.85
Hydro 4.62 6.29 10.91
Wind 0.41 0.05 0.46
Geothermal 0.13 0.07 0.21
Total electricity 37.60 30.49 68.10

Nuclear: 15%

Biomass and waste: 1%

Coal: 41%

Hydro: 16%Wind: <1%

Geothermal: <1%

Oil: 6%

Natural gas: 20%

Figure 1.3. Electricity generated in 2006 by fuel.

electricity generation and, considering also nuclear power, the share of non–renewable
sources in electric power generation is 82%. Indeed, the amount of coal employed in
thermal power plants corresponds to about 66% of the total coal consumption and about
18% of TPED. Note that wind power covers less than 1% of the total electricity genera-
tion: such a situation derives from the limits of the actual wind technology, as it is pointed
out in Section 1.2. The production of electricity using wind energy in OECD countries
is eight times higher than that of non–OECD countries, but still almost negligible with
respect to the total production of electricity.
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Finally, to conclude this brief overview of the present energy situation, the data of energy–
related carbon dioxide emissions in 2006 are given in Table 1.3 and in Figure 1.4, that
shows the distribution of CO2 emissions by region, by fuel and by sector. In particular,
the considered fields are power generation4, industry, transportation and other sectors5.
Coherently with the distribution of TPED, OECD countries account for almost 50% of the
global CO2 emissions. Note that the sector of power generation alone accounts for 45% of
the global emissions, due to the massive usage of coal, which is the most carbon–intensive
fuel [17], since its combustion releases about 112 gCO2/MJ, i.e. almost twice the amount
of CO2 per energy unit with respect to natural gas (62 gCO2/MJ). Non–OECD countries
employ more coal–fired thermal plants than OECD countries, where a much higher share
of nuclear power is present. Oil is the second source of carbon dioxide emissions (36%),
mainly in the transportation sector (which accounts for 67% of oil share of global CO2

emissions). Indeed, oil covers practically 100% of the whole transportation sector while
its use in power generation, industry and other sectors is relatively low.

Table 1.3. Energy–related carbon dioxide emissions in 2006 by region, fuel and
sector (Gt). Data taken from [1].

Source and end–use sector OECD Non–OECD World
Oil total 5.59 4.19 9.78
Power generation 0.30 0.58 0.88
Industry 0.44 0.56 1.00
Transport 3.77 2.03 5.80
Other sectors 0.70 0.72 1.42
Natural gas total 2.80 2.64 5.44
Power generation 0.95 1.26 2.21
Industry 0.61 0.56 1.53
Transport 0 0 0
Other sectors 1.02 0.55 1.22
Coal total 4.39 7.28 11.67
Power generation 3.72 4.61 8.33
Industry 0.51 2.07 1.79
Transport 0 0 0
Other sectors 0.08 0.45 1.33
Total CO2 emissions 12.79 14.12 26.91

4Power generation refers to fuel use in electricity plants, heat plants and Combined Heat and Power
(CHP) plants. Both main activity producer plants and small plants that produce fuel for their own use
(autoproducers) are included.

5Other sectors include residential use, commercial and public services, agriculture/forestry and fishing.
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(a) (b)

non−OECD: 52%

OECD: 48%

Coal: 44%

Natural gas: 20%

Oil: 36%

(c)

Transportation: 23%

Industry: 18%

Other: 14%

Power: 45%

Figure 1.4. Energy–related carbon dioxide emissions in 2006 by (a) region,
(b) fuel and (c) sector.

1.1.2 Global energy outlook to 2030

Energy forecasting on both short and long horizons is a task of great interest for a large
variety of subjects, including governments, finance companies, investors, enterprises op-
erating in every sector, economists, scientists, etc.. Energy is required for any human
activity and consequently any noticeable change in the production, trade and consump-
tion of energy influences all of the world societies. The evolution of the global energy
system is continuously being studied by many public and private institutions and some of
the resulting outlooks and reports are made available every year (see e.g. [1, 2, 18]). How-
ever, to perform a relatively accurate estimate of the future course of the global energy
situation is a hard (impossible?) task, which typically fails due to the system complexity
and the presence of large uncertainty sources and external factors6. Nevertheless, some
general trends in global energy production and consumption can be captured with some
approximation and are now resumed. In particular, most of the information reported here
derive from the outlooks [1, 2]. The projections presented in both [1] and [2] have been
computed considering a reference future scenario in which the current laws and policies

6An interesting example of failed forecast and an analysis of the causes of failure can be found in [19]).
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remain unchanged throughout the projection period (i.e. 2005–2030). Indeed, such pro-
jections are subject to several sources of uncertainty, like the economy growth rate of the
various world’s regions, in terms of GDP (Gross Domestic Product), the variation of en-
ergy prices, the change of energy intensity (i.e. the link between economic growth and
energy consumption), the adoption of political measures that influence energy production
and use and other geopolitical factors. In order to evaluate the effects of such uncertainty
sources, in [2] four different alternatives have been considered in addition to the reference
scenario. These scenarios differ by the assumed GDP growth rates and trends of oil price,
which are considered to be the most influent factors on energy consumption. In the refer-
ence case, the considered GDP growth rates are reported in Table 1.4 and the oil price is
supposed to reach around $70 per barrel in 2015 and to rise steadily to $113 per barrel in
2030 (i.e. $70 per barrel in inflation-adjusted 2006 dollars). The variations considered in
the alternative scenarios are listed below.

I) High economic growth case. Average GDP growth increased by +0.5% per year for
each country, oil price as in the reference case.

II) Low economic growth case. Average GDP growth decreased by -0.5% per year for
each country, oil price as in the reference case.

III) High oil price case. Average GDP growth as in the reference case, oil price in-
creasing from the initial value of about 105 $/barrel (September 2008) to about 186
$/barrel in 2030.

IV) Low oil price case. Average GDP growth as in the reference case, oil price declining
from the initial value of about 105 $/barrel (September 2008) to about 46 $/barrel
in 2016, then increasing to 68 $/barrel in 2030.

Table 1.4. Average annual growth of gross domestic product by region considered in [2],
2006–2030 (Percent per Year)

History Projections
Region 2006 2007 2008 2008–2015 2015–2030
OECD North America 3.0 2.3 1.9 2.8 2.5
OECD Europe 3.3 3.1 2.7 2.3 2.1
OECD Asia 2.7 2.6 2.9 2.2 1.5
Non–OECD Europe and Eurasia 7.9 7.9 7.1 5.1 3.4
Non–OECD Asia 9.2 9.3 8.7 6.6 4.7
Middle East 5.0 4.6 5.0 4.4 3.7
Africa 5.5 6.0 5.8 4.9 4.1
Central and South America 5.4 5.4 5.1 4.1 3.6

11



1 – Introduction

Table 1.5. Total primary energy demand (trillion MJ) projection over the years
1990–2030 by source and region. Data taken from [1].

Source and region 1990 2006 2015 2020 2025 2030 Ave. yearly
% change

OECD
Oil 79.38 92.48 90.10 89.64 88.34 86.66 -0.3
Natural gas 35.16 50.66 56.94 58.57 60.62 63.26 0.9
Coal 44.50 47.69 50.61 50.86 51.41 49.90 0.2
Nuclear 18.84 25.70 26.33 26.29 26.71 26.21 0.1
Biomass and waste 5.90 8.83 12.76 14.61 16.62 18.42 3.1
Hydro 4.23 4.60 5.06 5.27 5.44 5.56 0.8
Other 1.21 1.75 4.23 5.73 7.16 8.75 6.9
OECD Total 189.20 231.74 246.10 250.95 256.31 258.74 0.5
non–OECD
Oil 50.61 68.49 90.97 100.23 109.23 117.64 2.3
Natural gas 34.87 50.11 64.60 72.80 81.09 90.39 2.5
Coal 48.39 80.21 117.77 132.26 146.16 155.58 2.8
Nuclear 3.14 4.77 7.87 8.96 10.38 11.55 3.8
Biomass and waste 31.86 40.86 44.80 46.72 48.77 51.12 0.9
Hydro 3.51 6.28 8.37 9.50 10.63 11.76 2.6
Other 0.29 1.00 2.38 3.30 4.39 5.90 7.7
non–OECD Total 172.70 251.75 336.78 373.46 410.68 443.96 2.4
World
Oil 134.73 160.98 189.45 198.62 206.74 213.90 1.0
Natural gas 70.04 100.77 121.54 131.04 141.68 153.65 1.8
Coal 92.90 127.90 168.43 183.13 197.57 205.49 2.0
Nuclear 21.98 30.47 34.20 35.25 37.09 37.72 0.9
Biomass and waste 37.76 49.69 57.56 61.33 65.39 69.58 1.4
Hydro 7.74 10.88 13.43 14.77 16.03 17.33 1.9
Other 1.50 2.76 6.61 9.00 11.55 14.65 7.2
World Total 366.63 483.49 591.21 633.16 676.12 712.34 1.6

According to [2], the different assumptions on oil price and economy growth do not influ-
ence the projections substantially, resulting in a variation of ±10% of the global energy
consumption in 2030. Indeed, it can be noted that even with the lowest value of GDP
growth considered in [2] (i.e. the values of Table 1.4, decreased by 0.5%), the assumed
GDP growth rates are actually highly optimistic, since for example the United States reg-
istered a GDP growth of 1.3% at the end of 2008 with respect to the end of 2007, with
-0.5% GDP in the fourth quarter of 2008 [20], and the short term projections for 2009
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1.1 – Global energy situation

forecast a further decrease, due to the present global financial crisis. However, accord-
ing to [1] the actual crisis is not expected to affect long–term investments in the energy
sector, but could lead to delays in the completion of the current projects, especially in
the high capital–intensive field of power generation. The reference scenario obtained in
[1], which takes into account the government policies and measures adopted up to mid–
2008, is similar to that of [2], except for some minor differences in the TPED share of
biomass and waste. The highlights of these projections can be deduced by the trends of
energy supply and consumption reported in Table 1.5 and Figure 1.5. An average yearly
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Figure 1.5. Projections of primary energy demand up to 2030 by source: oil (solid),
natural gas (dashed), coal (dotted), nuclear (dash–dot), biomass and waste (solid line with
circles), hydro (solid line with triangles) and other renewables (solid line with asterisks).
Projections for (a) OECD countries, (b) non–OECD countries and (c) world total.

growth of 1.6% of TPED is estimated, leading to an overall increase of about 47% in
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2030 with respect to 2006. About 87% of such a growth is accounted for by non–OECD
countries, and about 50% by China and India. In these regions, a continuous increase of
the demand of every kind of primary energy is expected, with the highest growth rate of
renewables but also noticeable percent increase of nuclear energy and fossil energies. Yet,
the amount of consumed energy per person of OECD countries will still be higher than
that of non–OECD. Demand for oil and coal energy in OECD countries is expected to
plateau and even to slightly decrease, while the consumption of the other non–renewable
energies continue to increase at a slow pace. The growth rate of global renewable energy,
excluding hydropower, is projected to be the highest among all of the sources, however
the TPED share of green energies in 2030 is estimated to be only about 2%, due to the
low starting base in 2006. Thus, in the reference scenarios of [1, 2], which practically
describe the course on which the world energy system is actually set, fossil sources still
account for 80% of the global primary energy demand in 2030, with a growth of 50% in
absolute terms with respect to 2006.
Figure 1.6 shows the projected distribution of global electricity generation by fuel in 2030.
It can be noted that the electricity share of renewable energy, excluding hydropower, is

Nuclear: 10%

Biomass
and waste: 3%

Hydro: 14%

Coal: 44%

Wind: 4%Geothermal: <1%

Solar: 1%

Oil: 3%

Natural
gas: 20%

Figure 1.6. Projected electricity generation in 2030 by fuel.

projected to increase from about 1% of 2006 (see Figure 1.3) to some 6%. Such increase
is mainly at the expense of nuclear power, which falls from 15% in 2006 to 10% in 2030.
Thus, according to the reference scenario in 2030 fossil sources will still account for 67%
of electricity generation, with coal being the largest electricity source.
As it can be expected, the energy–related carbon dioxide emissions (see Table 1.6) in the
reference scenarios grow with an average rate of 1.6%, following the increase of energy
demand, with practically the same distribution by source as that of 2006. Such a course
of the global CO2 emissions is reported in Figure 1.7: an increase of 45% in 2030 with
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1.1 – Global energy situation

respect to 2006 is expected, i.e. from about 26 Gt to about 40 Gt. Some 75% of the

Table 1.6. Projected energy–related carbon dioxide emissions in 2030 by region, fuel and
sector (Gt). Data taken from [1].

Source and end–use sector OECD Non–OECD World
Oil total 5.15 7.15 12.30
Power generation 0.11 0.58 0.69
Industry 0.34 0.81 1.15
Transport 3.77 4.23 8.00
Other sectors 0.56 1.12 1.68
Natural gas total 3.49 4.75 8.24
Power generation 1.38 1.26 2.64
Industry 0.64 0.99 1.63
Transport 0 0 0
Other sectors 1.20 0.88 2.08
Coal total 4.51 14.11 18.62
Power generation 3.90 4.60 8.50
Industry 0.44 3.59 4.03
Transport 0 0 0
Other sectors 0.04 0.88 0.92
Total CO2 emissions 13.15 26.01 39.16
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Figure 1.7. Projected carbon dioxide emissions (Gt) in the period 1990–2030.

increase of CO2 emissions arises in China, and approximately 97% is accounted for by
non–OECD countries. The power generation sector will still account for most of the car-
bon dioxide emissions (about 30%), followed by the transportation sector (20%). Clearly,
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higher CO2 emissions lead to higher atmospheric CO2 concentration. The negative effects
of such increase of CO2 concentration on global warming and climate change are widely
recognized today and they will be briefly recalled in Section 1.3. For more information
and deepening, the interested reader is referred e.g. to the assessment report [21, 22, 23]
of the Intergovernmental Panel on Climate Change (IPCC).
On the basis of the data and concise considerations presented so far, a general frame-
work can be easily depicted, where the actual and projected global energy consumption
is based on fossil sources. Renewable energies account for a negligible part of the energy
mix, though they have enough potential to cover the world needs. The main causes of
such a situation are the high costs of renewable energy technologies, their nonuniform
and variable availability and their low power density per unit area.
The next Section focuses the attention on wind energy, describing the state of the art of
the present technology and highlighting in particular the technical limitations that reduce
its competitiveness.

1.2 Wind energy technology: state of the art and innova-
tive concepts

According to relatively recent studies [6], global wind power has the potential to supply
the whole global energy need. In particular it has been shown that by exploiting only 20%
of the global land sites of “class 3” or more (i.e. with average wind speed greater than
6.9 m/s at 80 m above the ground), the entire world’s energy demand could be supplied.
However, such potential can not be harvested with competitive costs by the actual technol-
ogy, based on wind towers. In this Section, the key points of the actual wind technology
are briefly summarized, to complete the context that motivates the present dissertation.
Moreover, the actual innovative concepts of high–altitude wind energy generation, that
are being studied in few research groups and companies in the world, are also surveyed.

1.2.1 Actual wind energy technology

An interesting overview of the present wind power technology can be found in the re-
cent paper [7], where the characteristics of modern wind turbines are described, together
with the current lines of research for future improvements. Other information and details
can be largely found in the literature (see e.g. [24, 25]). Development of modern wind
technology started in the late 1970s and dramatic improvements have been obtained since
that time. The present commercial wind turbines have three-bladed rotors with diameters
up to 90–100 m, installed atop towers with 60–100 m of height (see Figure 1.8(a)). The
turbine’s drive train (i.e. the gearbox, the electric generator and the power converter) is
placed inside the nacelle and linked to the rotor’s hub. Large commercial turbines can
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(a) (b)

Figure 1.8. (a) Sketch of a modern three–bladed wind tower. (b) Deployment of
wind towers in actual wind farms

typically produce 1.5–3 MW of electricity depending on the hub height, the rotor size and
the electric equipment (see e.g. [26]). The amount of energy in the wind available for
extraction by the turbine increases with the cube of wind speed, however such increase
is exploited only to some extent, since the operation of a turbine is suitably controlled
in order to not exceed the power level for which the electrical system has been designed
(referred to as the “rated power”). The turbine power output is controlled by rotating the
blades about their long axis to change the angle of attack with respect to the relative wind
as the blades spin about the rotor hub (see Section 3.1 for further details on the influence
of the airfoil’s attack angle on aerodynamical forces). Moreover, the turbine is pointed
into the wind by a control system that rotates the nacelle about the tower, on the basis
of measurements of the wind speed and direction. Almost all modern turbines operate
with the rotor positioned on the windward side of the tower. Typically, a turbine starts
producing power with about 3.5–m/s wind speed and reaches the rated power output at
about 15 m/s [26], according to a power curve (i.e. the relationship between wind speed
and generated power) like the one depicted in Figure 1.9, related to a commercial 90–m
diameter, 2–MW rated power wind turbine. If the wind speed exceeds the “cut–out” value
(i.e. about 25 m/s), the blades are pitched to stop power production and rotation, in order
to avoid possible breaking due to the excessive forces.
It is important to note that the wind energy potential is a function of the height above the
ground due to the presence of the so–called “wind shear”, i.e. the growth of wind speed
with elevation [6]. An example of wind shear curve for a site near Brindisi, Italy, obtained
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Figure 1.9. Power curve of a commercial 90–m diameter, 2–MW rated power wind turbine.

from wind speed measurements collected daily7 in the period 1996–2006, is reported in
Figure 1.10 (see Section 6.1 for other examples and further details on wind data analy-
ses). The height and the size of wind turbines have increased in the past years to capture
the more energetic winds at higher elevations (see Table 1.7, which reports some data
related to commercial land turbines [26]). However, actually the limits of such a dimen-
sion growth have been almost reached, from both economical and technological points
of view. In fact, in general the costs of larger turbines grow linearly with the volume of
the employed material (i.e. with the cube of the diameter), while the related increase of
energy output is proportional to the rotor–swept area (the diameter squared). Therefore,
at some size the cost for a larger turbine will grow faster than the resulting energy output
revenue, making scaling not economically profitable. In practice, studies have shown that
in recent years blade mass has been scaling at roughly an exponent of 2.3 versus the ex-
pected 3, thus delaying the achievement of dimension limit from the economical point of
view. However, it has to be also considered that much higher operation, mobilization, and
demobilization costs incur to build bigger turbines. Moreover, serious constraints to size
growth have been reached, related to land transportation and turbine construction. Trans-
portation of bigger turbine parts is not cost–effective and crane requirements are quite
stringent because of the large nacelle mass in combination with the height of the lift and

7Data retrieved from the database RAOB (RAwinsonde OBservation) of the National Oceanic & Atmo-
spheric Administration, see [27].
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Figure 1.10. Wind shear related to the site of Brindisi, Italy. Solid line: wind shear
model, asterisks: averaged wind speed measurements

Table 1.7. Actual wind energy technology: rated power, weight and size of
modern commercial turbines.

Rated
power

Hub
height

Rotor di-
ameter

Total
weight

Tower
weight

Nacelle
weight

Rotor
weight

0.85 MW 44 m 52 m 77 t 45 t 22 t 10 t
0.85 MW 49 m 52 m 82 t 50 t 22 t 10 t
0.85 MW 55 m 52 m 92 t 60 t 22 t 10 t
0.85 MW 65 m 52 m 104 t 72 t 22 t 10 t
0.85 MW 74 m 52 m 127 t 95 t 22 t 10 t
1.65 MW 70 m 82 m 200 t 105 t 52 t 43 t
1.65 MW 78 m 82 m 210 t 115 t 52 t 43 t
1.65 MW 80 m 82 m 220 t 125 t 52 t 43 t
2.0 MW 80 m 90 m 256 t 150 t 68 t 38 t
2.0 MW 95 m 90 m 306 t 200 t 68 t 38 t
2.0 MW 105 m 90 m 331 t 225 t 68 t 38 t
3.0 MW 80 m 90 m 271 t 160 t 70 t 41 t
3.0 MW 105 m 90 m 346 t 235 t 70 t 41 t

the required boom extension. For all these reasons, it is not expected that land–based tur-
bines will become much larger than about 100 m in diameter, with corresponding power
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outputs of about 3–5 MW (see [7] for more details).
Other important aspects of wind energy technology are the generation efficiency and the
average yearly generated power. As regards efficiency, according to Betz limit [24], a
device can extract a theoretically maximum 59% of the energy in a stream with the same
area as the working area of the device. The aerodynamic performance of a modern wind
turbine has improved dramatically over the past 20 years and the rotor system can be
expected to capture about 80% of such a theoretical upper bound. However, actually
the turbine overall efficiency is such that about 40–50% of Betz limit is achieved. Fur-
thermore, due to wind intermittency, any wind generator cannot produce continuously its
rated power, thus the average power generated over the year is only a fraction, indicated as
Capacity Factor (CF), of the rated one. For a given wind generator on a specific site, the
CF can be evaluated knowing the generator power curve and the probability density dis-
tribution function of wind speed that flows in through the area spanned by the blades (see
Section 6.2). The issue of wind energy density per unit area of occupied land is also of
paramount importance. In order to generate a noticeable amount of energy, wind turbines
can be arranged in the so–called “wind farms”, i.e. tens or hundreds of turbines built in
the same location. According to [6, 25], the usual rule to deploy wind turbines of a given
diameter D in a wind farm is to keep a distance of 7D in the wind prevalent direction and
4D in the transverse direction (see Figure 1.8(b)). This way, considering 90–m diameter,
2–MW rated power turbines, a density of about 4.4 turbines per km2 is obtained, with a
corresponding rated power density of 8.8 MW/km2. Considering a good windy site (i.e.
CF=0.4), a consequent average power density of 3.52 MW/km2 is achieved. Thus, in
order to generate an average power of 1000 MW (i.e. the power supplied by medium–to–
large thermal plants), a land occupation of about 280 km2 would be required, where more
than 1200 turbines should be deployed. Such power density values are much lower than
those given by thermal plants. For example, a coal–fired power plant like the “Federico
II” in Brindisi, Italy, has a land occupation of 270 hectare (i.e. 2.7 km2) and a rated power
of 2640 MW: the corresponding rated power density is 984 MW per km2, i.e. 100 times
higher than a wind farm. Moreover, the CF of a thermal plant is close to 1, thus its av-
erage power density is about 270 times higher than that of a wind farm placed in a good
location.
As regards future improvements of the present wind technology, studies on advanced
rotors and drive trains and innovative towers are undergoing to try to push forward the
actual technical limitations. Moreover, offshore wind turbines are being deployed at wa-
ter depths of up to 30 m and research activities are undergoing to develop deep–water
technologies (i.e. wind turbines placed in the sea with 60–90 m of depth). However, ac-
cording to [7], it is clear that no single component improvement in cost or efficiency can
achieve significant cost reductions or dramatically improved performance in the present
wind technology and it is estimated that all the projected advancements can cumulatively
bring no more than 30–40% improvement in the cost effectiveness of wind energy over
the next decade.
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1.2.2 Concepts of high–altitude wind power

As already anticipated, in this dissertation the idea of high–altitude wind energy is inves-
tigated. In particular, in the present research a precise concept [28, 29] of high–altitude
power generation (generically denoted as “KiteGen”) has been considered. Such a con-
cept will be thoroughly presented and analyzed in Chapters 2–6. At present, quite few
research groups and companies in the world are studying and developing similar ideas
of exploiting high–altitude wind flows, with conceptual and practical realizations that are
either similar to KiteGen (see e.g. [30, 31]) or very different [32]. The main research
activities on this subject undergoing around the world, to the best of the author’s knowl-
edge, are briefly resumed and referenced in this Section.
As already noted, the research groups of the Katholieke Universiteit of Leuven (Belgium)
[30] and of the Technical University of Delft (The Netherlands) [31] are studying and de-
veloping a concept that is very close to KiteGen, i.e. the use of controlled tethered airfoils
to extract energy from high–altitude wind flows. Therefore, the description of KiteGen
technology included in Chapter 2 of this dissertation is valid also for the projects [30, 31]
and the existing differences will be highlighted when appropriate (see Section 2.3.1).
A different concept is being investigated by Sky Wind Power Corporation [32, 33], us-
ing the so–called Flying Electric Generators (FEG), i.e. generators mounted on tethered
rotorcrafts that levitate at altitudes of the order of 4600 m. Differently from [32], in the
KiteGen technology the airfoils fly at elevations of at most 800–1000 m above the ground,
and the bulkier mechanical and electrical parts of the generator are kept at ground level.
In California, a company named Makani is currently working on wind generation using
tethered airfoils or power kites. However, Makani does not release any information on its
undergoing projects.
Finally, in the field of marine transportation, the company Skysails GmbH (Hamburg,
Germany) [34] is developing a towing kite system that should be able to exploit the aero-
dynamical forces as auxiliary propulsion for large mercantile ships, achieving an esti-
mated reduction of fuel consumption up to 30%.

1.3 Contributions of this dissertation

The data and concise analyses described in Sections 1.1–1.2 are sufficient to delineate
the motivations and the objectives of this dissertation. The analyses of the actual and
projected global energy situation of Section 1.1 clearly indicate the two major challenges
that mankind is facing today: the supply of reliable, cheap energy in large quantities and
the abatement of greenhouse gas emissions.
The dependance of the global energy system on fossil sources owned by few producer
countries leads to economical instability, prevents millions of people from having access
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to energy and gives rise to delicate geopolitical equilibria. Non–OECD countries growing
at fast rates like China and India will account for a 50% increase of energy demand in the
next two decades. Such an increment has to be covered by an increase of energy supply:
considering the current situation, fossil sources are the first candidates to fuel the growth
of non–OECD world. As a consequence, the present problems of high concentration of
fossil sources in few countries will be more acute, energy costs will continuously increase
on average and pronounced short–term swings of oil price will remain the norm in the
next 20 years.
The issue of climate change due to excessive concentration of greenhouse gases in the
atmosphere, that is clearly related to the predominance of fossil sources in the global en-
ergy mix, may be even more serious than geopolitics. In fact, if no measure is undertaken
to contain the emissions of carbon dioxide, a doubling of CO2 concentration is expected
to be reached by 2100, with a consequent global average temperature increase of up to
6◦ C [1, 21, 22, 23]. Almost all of the increase of emissions in the next twenty years is
accounted for by non–OECD countries.
In [1], two alternative climate–policy scenarios are considered (in addition to the reference
one), in which the undertaking of political measures and investments aimed at reducing
CO2 emissions is assumed. Both scenarios lead to a long–term stabilization of carbon–
dioxide emissions and they differ on the basis of the amount of efforts and investments
employed to reach such a goal. Without entering into details (the interested reader is
referred to [1]), the alternative scenarios clearly indicate two key points:

• power generation is a critical sector since it is the less expensive field for CO2

reduction. As showed in Section 1.1, power generation accounts for 45% of energy–
related CO2 emissions. A shift to carbon–free electricity and heat generation would
significantly contribute to reduce the emissions of greenhouse gases with relatively
low costs and timings as compared to those needed to renew the transportation sys-
tem, which is heavily oil dependent and would require expensive and slow transfor-
mation. Moreover, electricity is the most refined form of energy and it can be used
to replace the use of fossil sources in every sector.

• Given the actual situation, policy intervention will be necessary, through ap-
propriate financial incentives and regulatory frameworks, to foster the devel-
opment of renewable and carbon–free electricity generation. One of the key
points to reduce the dependance on fossil fuels is the use of a suitable combination
of alternative energy sources. Nuclear energy actually represents the fourth contri-
bution to the world’s power generation sector (with a 15% share, see Section 1.1)
and it avoids the problems related to carbon dioxide emissions. However, the issues
related to safe nuclear waste management have not been solved yet, despite the em-
ployed strong efforts. Moreover, the cost of nuclear energy is likely to increase, due
to massive investments of emerging countries [35, 36] and uranium shortage [37].
Renewable energy sources like hydropower, biomass, wind, solar and geothermal
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actually cover 19% of global electricity generation (with hydro alone accounting
for 16%), but they could meet the whole global needs, without the issues related to
pollution and global warming. However, the present cost of renewable energies is
not competitive without incentives, mainly due to the high costs of the related tech-
nologies, their discontinuous and non–uniform availability and the low generated
power density per km2. The use of hydroelectric power is not likely to increase sub-
stantially in the future, because most major sites are already being exploited or are
unavailable for technological and/or environmental reasons. Biomass and geother-
mal power have to be managed carefully to avoid local depletion, so they are not
able to meet a high percentage of the global consumption. Solar energy has been
growing fast during the last years (35% average growth in the U.S. in the last few
years, [38]), however it has high costs and requires large land occupation.

Focusing the attention on wind energy, in Section 1.2 it has been noted that there is enough
potential in global wind power to sustain the world needs [6]. However, the technical
and economical limitations to build larger turbines and to deploy wind towers in “good”
sites, that are often difficult to reach, the low average power density per km2 and the
environmental impact of large wind farms hinder the potential of the actual technology to
increase its share of global electric energy generation above the actual 1%. The expected
technological improvements in the next decade are not enough to make the cost of wind
energy competitive against that of fossil energy, without the need of incentives. As is is
stated in [7], “There is no “big breakthrough” on the horizon for wind technology”.
The major contribution of Part I of this dissertation is to demonstrate that a real
revolution of wind energy can be achieved with the innovative KiteGen technology.
It will be showed that high–altitude wind power generation using controlled airfoils has
the potential to overcome most of the main limits of the present wind energy technology,
thus providing renewable energy, available in large quantities everywhere in the world,
at lower costs with respect to fossil energy and without the need for ad–hoc policies and
incentives. Moreover, it will be showed that such a breakthrough can be realized in a
relatively short time, of the order of few years, with relatively small efforts in research
and development. Indeed, the idea of harvesting high–altitude wind energy introduced
in the early ’80s (see [8]) can be fully developed nowadays thanks to recent advances in
several engineering fields like aerodynamics, materials, mechatronics and control theory.
In particular, the advanced control techniques investigated in Part II of this dissertation
play a role of fundamental importance, since they allow to control and maximize the
performance of complex systems like KiteGen, while satisfying demanding operational
constraints, at the relatively fast adopted sampling rate. In order to support these claims,
the original results of the research activity performed in the last three years are organized
in the next Chapters as follows.

I) Description of high–altitude wind technology using tethered airfoils and design
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of the related power generation cycles (Chapter 2). The concept and core com-
ponents of KiteGen are described, as well as the two possible configurations that
have been studied and their respective operation cycles, originally designed in this
research activity.

II) Modeling and control of high–altitude wind energy generators (Chapter 3). The
dynamical model of KiteGen described in Chapter 3 has been refined during the last
three years and actually it includes also variable aerodynamic coefficients and cable
drag and weight effects. Such a model is employed to simulate the system behavior
and to evaluate the potential of KiteGen to generate large quantities of wind en-
ergy. In order to stabilize the airfoil’s flight and to maximize the generated energy,
advanced Nonlinear Model Predictive Control (NMPC) techniques, together with
an efficient implementation based on Set Membership (SM) theory, are employed.
The theoretical aspects of the employed control technique are investigated in Part
II of this dissertation.

III) Optimization of KiteGen (Chapter 4). The operation of the designed energy gener-
ation cycles involves several parameters that have to be set up according to the wind
speed, the airfoil’s characteristics, the number of employed airfoils, etc.. Simpli-
fied power equations and numerical optimization techniques are employed to design
such parameters in order to maximize the energy output. The optimal parameters
are then employed in the numerical simulations and the resulting average power is
compared to its theoretical upper bound. Moreover, numerical optimization is em-
ployed to maximize the average energy generated by a kite wind farm (i.e. several
KiteGen generators working in the same location) while avoiding aerodynamical
interference among the airfoils.

IV) Experimental activities (Chapter 5). On the basis also of the results of the numeri-
cal simulations presented in this dissertation, a small–scale KG–yoyo prototype has
been built at Politecnico di Torino, in order to test the concept of KiteGen. Such
prototype is briefly described in this thesis and the data collected in the first tests are
showed. The good matching between simulation and real measured data increases
the confidence with the obtained numerical results also for medium–to–large scale
generators.

V) Wind data, capacity factor and cost analyses (Chapter 6). Using the large amount
of measured wind speed data contained in [27], the CF of KiteGen in various loca-
tions around the world is estimated and compared to that of wind turbines. More-
over, on the basis of a comparison between actual wind farms and high–altitude
wind farms, an estimate of the cost of energy obtained with KiteGen is computed.

The various contributions given in this dissertation have been partly published in [9, 10,
11, 12, 13, 14]. Considering all of the research and development activities undergoing
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around the world and cited in Section 1.2.2, quite few research groups and companies are
actually working on the innovative idea of high–altitude wind power. To the best of the
author’s knowledge, this is one of the first doctoral dissertations on wind energy gener-
ation using tethered airfoils which includes theoretical analyses, system design, control
design, numerical simulations, capacity factor and economical analyses and experimental
tests.
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Chapter 2

KiteGen: high–altitude wind energy
generation using tethered airfoils

This Chapter introduces the basic concepts, the possible configurations and the opera-
tional energy generation cycles of KiteGen. Then, the role of control and optimization
in KiteGen is highlighted. Finally, the naval application of the concept, which is being
studied in the project KiteNav, started in 2007, is also briefly described.

2.1 Basic concepts

The concept of KiteGen is to use airfoils, linked to the ground by two cables, to extract
energy from wind blowing at higher heights with respect to those of the actual wind tech-
nology. The flight of the airfoils is suitably driven by an automatic control unit, able to
differentially pull the lines to influence the wing motion. Wind energy is collected at
ground level by converting the traction forces acting on the airfoil lines into electrical
power, using suitable rotating mechanisms and electric generators placed on the ground.
The airfoils are able to exploit wind flows at higher altitudes than those of wind towers
(up to 1000 m, using 1200–1500–m–long cables), where stronger and more constant wind
can be found basically everywhere in the world.
The key idea of the KiteGen project is to harvest high–altitude wind energy with the
minimal effort in terms of generator structure, cost and land occupation. In the actual
wind towers, the outermost 20% of the blade surface contributes for 80% of the generated
power. The main reason is that the blade tangential speed (and, consequently, the effective
wind speed) is higher in the outer part, and wind power grows with the cube of the effec-
tive wind speed. Thus, the tower and the inner part of the blades do not directly contribute
to energy generation. Yet, the structure of a wind tower determines most of its cost and
imposes a limit to the elevation that can be reached (see Section 1.2.1). To understand the
concept of KiteGen, one can imagine to remove all the bulky structure of a wind tower

27



2 – KiteGen: high–altitude wind energy generation using tethered airfoils

and just keep the outer part of the blades, which becomes a much lighter airfoil flying
fast in crosswind conditions (see Figure 2.1), connected to the ground by only two cables.
Thus, the rotor and the tower of the present wind technology are replaced in KiteGen

Figure 2.1. Basic concept of KiteGen technology

technology by the airfoil and its cables, realizing a wind generator which is largely lighter
and cheaper. For example, in a 2–MW wind turbine, the weight of the rotor and the tower
is typically about 300 tons (see Table 1.7 in Section 1.2.1). As it will be showed in the
next Chapters of this dissertation, a high–altitude generator of the same rated power can
be obtained using a 500–m2 airfoil and cables 1000–m long, with a total weight of about
2 tons only.

2.1.1 The airfoil
High efficiency, maneuverability, resistance to strain and lightness are the main character-
istics that an airfoil should have to be employed for high–altitude wind energy production.
Aerodynamic efficiency is defined as the ratio between the lift and drag coefficients of the
wing, denoted as CL and CD respectively (see Section 3.1). Such coefficients are func-
tions of the attack angle α, i.e. the angle between the airfoil’s longitudinal axis and the
effective wind flow (see Figure 2.2(a)). Assuming an infinite wingspan, functions CL(α)
and CD(α) depends on the airfoil profile only. If a finite wingspan is considered, the
effect of turbulence at the lateral edges of the wing reduces its aerodynamic efficiency.
Such efficiency loss is higher with a lower aspect ratio, i.e. the ratio between the airfoil
wingspan ws and its chord c (Figure 2.2(b)). Since at first approximation the generated
power increases with the square of aerodynamic efficiency, airfoils with high aspect ratios
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Figure 2.2. (a) Airfoil during flight and attack angle α. (b) Airfoil top view:
wingspan ws and chord c.

(i.e. high wingspan) should be employed. The maneuverability of the airfoil, in terms of
minimal turning radius RF during the flight, also depends on its wingspan, according to
the approximate relationship RF ' 2.5 ws. Since the optimal airfoil trajectory is a loop
or a “figure eight” in the air (see Chapter 3), its wingspan should be contained in order to
obtain trajectories that are as strict as possible, thus allowing to employ more airfoils in a
relatively small area. Thus, efficiency and maneuverability lead to opposite requirements
on the wing geometry. As regards resistance and lightness, such characteristics depend
mainly on the employed material and partly on the airfoil design. Flexible materials and
air–inflated structures have been employed so far in the development of KiteGen (see
Chapter 5), since they are light and cheap and provide sufficient rigidity. In particular,
commercially available power kites used for surfing or sailing have been employed, so
that in the following the airfoil will be also referred to as “kite”. Such power kites are
not designed for generating energy and therefore their efficiency is relatively low. Indeed,
rigid airfoils made of innovative composite materials and designed to maximize efficiency
would provide a noticeable performance improvement.

2.1.2 The cables

The airfoil lift force is converted into mechanical power through the traction forces acting
on the lines. Thus, the latter have to be strong enough to support high loads. At the same
time, the cables have to be light and their diameter should be kept as small as possible,
to limit their weight and aerodynamic drag. Lines realized in composite materials, with
a traction resistance 8–10 times higher than that of steel cables of the same weight (see
Figure 3.8 in Section 3.4), are being employed in the KiteGen project. In order to extract
energy from wind flows between 200–1000 m of elevation, 500–1500–m–long lines are
needed. The prototype built in the KiteGen project is equipped with two 1000–m cables
(see Chapter 5 for further details).
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2 – KiteGen: high–altitude wind energy generation using tethered airfoils

2.1.3 The Kite Steering Unit
At ground level, the airfoil cables are rolled around two drums, linked to two electric
drives which are able to act either as generators or as motors. The kite flight is tracked
using on–board wireless instrumentation (GPS, magnetic and inertial sensors) as well as
ground sensors, to measure the airfoil speed and position, the power output, the cable
force and speed and the wind speed and direction. Such variables are employed for feed-
back by an electronic control system, able to influence the kite flight by differentially
pulling the cables, via a suitable control of the electric drives (see Figure 2.3). The sys-

On-board sensors

Kite

Cables

Drums

Electric drives

Ground sensors

Control unit

Figure 2.3. Sketch of a Kite Steering Unit (KSU)

tem composed by the electric drives, the drums, the on–board sensors and all the hardware
needed to control a single kite is denoted as Kite Steering Unit (KSU) and it is the very
core of the KiteGen technology. The KSU can be employed in different ways to gener-
ate energy, depending on how the traction forces acting on the cables are converted into
mechanical and electrical power. In particular, two different configurations have been
investigated so far, namely the KG–yoyo and the KG–carousel configurations. In the
KG–yoyo configuration, the KSU is fixed on the ground and wind power is captured by
unrolling the kite lines, while in the KG–carousel configuration the KSU is put on a vehi-
cle dragged by the line forces along a circular rail path, thus generating energy by means
of additional electric generators linked to the wheels. Indeed, the described high–altitude
wind energy generators are complex, open–loop unstable systems, affected by external
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2.2 – The role of control and optimization in KiteGen

disturbances (e.g. wind turbulence), with nonlinear dynamics and operational constraints.
Thus, the use of an advanced automatic control technique, able to stabilize the kite flight
while coping with disturbances and constraints, is the crucial feature of KiteGen, since it
is fundamental to achieve the best energy generation performance, as it will be highlighted
in the next Section.

2.2 The role of control and optimization in KiteGen

To generate energy in a reliable and effective way, in both the KG–yoyo and KG–carousel
configurations the kite flight has to be stabilized and suitably controlled in order to con-
tinuously perform a cycle composed by two phases. In each of these working phases, the
objective to be achieved (i.e. maximization of the generated energy) can be formulated as
an optimization problem with its own cost function and with state and input constraints,
in order to prevent the kite from crashing and to avoid line entangling and interference
among more kites flying close in the same area. Then, a suitable control strategy has to
be employed, able to achieve the required objective while avoiding constraint violation.
To this end, Nonlinear Model Predictive Control (NMPC, see e.g. [39]) techniques are
employed, since they are able to take into account state and input constraints and they
can be applied to nonlinear systems in a quite straightforward way. However, in KiteGen
an efficient MPC implementation is needed for the real time control computations, which
require the solution of a complex optimization problem at the employed sampling time
(of the order of 0.2 s). Thus, a fast implementation technique of the obtained predictive
controller is adopted (a deep analysis of the theoretical properties of such efficient MPC
implementation is the main contribution of Part II of this dissertation). Note that, differ-
ently from what happens with control applications in many engineering fields, automatic
control is the core of KiteGen and advanced control techniques are fundamental to op-
erate high–altitude power generators. As regards the measurement and/or estimation of
the actual state value, needed to perform the control computation, the on–board sensors
are employed together with advanced Set Membership (SM) filtering techniques (see e.g.
[40, 41]).
As it will be showed in Chapter 3–4, the operation of the designed energy generation cy-
cles also involves several parameters that have to be set up according to the wind speed,
the airfoil’s characteristics, the number of employed airfoils, etc.. In order to optimally de-
sign such parameters to maximize the energy output, numerical optimization techniques
are employed (see Chapter 4). Indeed, optimization is also the instrument which the
employed MPC techniques rely on. Thus, also numerical optimization theory plays a
fundamental role in KiteGen technology.
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2.3 KiteGen configurations and operating cycles

2.3.1 KG–yoyo configuration
In the KG–yoyo configuration, the KSU is fixed with respect to the ground. Energy is
obtained by continuously performing a two-phase cycle (depicted in Figure 2.4): in the
traction phase the kite exploits wind power to unroll the lines and the electric drives
act as generators, driven by the rotation of the drums. When the maximum line length

Figure 2.4. Sketch of a KG–yoyo cycle: traction (solid) and passive (dashed) phases.

is reached, the passive phase begins and the drives act as motors, spending a minimum
amount of the previously generated energy, to recover the kite and to drive it in a position
which is suitable to start another traction phase, i.e. when the kite is flying with wind
advantage in a symmetric zone with respect to the nominal wind direction. The passive
phase can be performed in two possible ways (see Figure 2.5):

I) “low power maneuver”: the kite is driven to the borders of the “power zone” (see
Figure 2.5), where its aerodynamic lift drops down and it can be therefore recovered
with low energy expense;

II) “wing glide maneuver”: a large length difference (approximately equal to the kite
wingspan) is issued between the two cables by pulling them in subsequent order,
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2.3 – KiteGen configurations and operating cycles

thus making the kite lose its aerodynamic lift and allowing a fast winding back of
the cables with low energy losses.

The wing glide maneuver has the advantage of occupying less aerial space than the low
power maneuver, however it may lead to higher cable and airfoil wear. As anticipated,

Figure 2.5. KG–yoyo passive phase: “low power” and “wing glide” maneuvers.

two different MPC controllers are designed to control the kite in the traction and passive
phases. For the whole cycle to be generative, the total amount of energy produced in
the traction phase has to be greater than the energy spent in the passive one. Therefore,
the controller employed in the traction phase must maximize the produced energy, while
in the passive phase the objective is to maneuver the kite in a suitable position and to
minimize, at the same time, the spent energy (see Chapter 3 for details). Other than in
this dissertation and in the related published works [9, 10, 11, 12, 13, 14], the potential of
the KG–yoyo configuration has also been investigated in [42] for the cases of one and two
kites linked to a single cable: optimal kite periodic loops, which maximize the generated
energy, have been computed considering as inputs the derivatives of the kite roll angle,
lift coefficient and cable winding speed. Moreover, in [30] a real time nonlinear MPC
scheme has been used to control a single kite and make it track pre–computed optimal
reference orbits which are parameterized with respect to the nominal wind speed. In this
paper, no pre–computed orbit is used and the designed nonlinear MPC controller directly
maximizes the generated energy. Moreover, the sampling time of 0.2 s employed here is
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2 – KiteGen: high–altitude wind energy generation using tethered airfoils

quite lower than the value used in [30] (equal to 1 s) and the kite lift coefficient is not
considered as an input variable. The latter difference is due to the presence of a different
kind of actuator: in the KG–yoyo prototype built at Politecnico di Torino, which this
paper refers to, the kite is commanded just by differentially pulling its two lines, while
in the prototype built at Delft University (see e.g. [43]), which [30] refers to, wireless–
commanded linear actuators are put on the kite lateral extremes. This solution allow to
also change the kite angle of attack (i.e. the aerodynamic characteristics), by changing the
position of the line attach points on each side of the airfoil. Such a solution gives more
control possibilities (since it allows to add an input channel to the system) but also seems
to be more susceptible to faults (e.g. wireless communication disturbances and failures).

2.3.2 KG–carousel configuration
The KG–carousel configuration is conceived for medium to large scale energy generators.
In such a configuration, several airfoils are controlled by their KSUs placed on vehicles
moving along a circular rail path (see Figure 2.6); the speeds of such vehicles are kept
constant by electric generators/motors acting on the wheels. The potentials of the KG–

Figure 2.6. Sketch of a KG–carousel.

carousel configuration have been investigated using either variable line length or constant
line length.

I) Constant line length. When fixed cable length is employed, energy is generated by
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2.3 – KiteGen configurations and operating cycles

continuously repeating a cycle composed of two phases, namely the traction and
the passive phases. These phases are related to the angular position Θ of the control
unit, with respect to the wind direction (see Figure 2.7). During the traction phase,

1st passive

sub-phase

traction phase

X

Y

nominal 

wind direction� � ��

� � �� � �� �
��

� � ��� � �� 2nd passive

sub-phase

3rd passive

sub-phase

vehicle with KSU

Figure 2.7. KG–carousel configuration phases with constant line length.

which begins at Θ = Θ3 in Figure 2.7, the MPC controller is designed in such a
way that the kite pulls the vehicle, maximizing the generated power. This phase
ends at Θ = Θ0 and the passive phase begins: the kite is no more able to generate
energy until angle Θ reaches the value Θ3. In the passive phase, the MPC controller
is designed to move the kite, with the minimal energy loss, in a suitable position to
begin another traction phase, where once again the control is designed to maximize
the generated power. In particular, the passive phase is divided into three sub–
phases; the transitions between each two subsequent passive sub–phases are marked
by suitable values of the vehicle angular position, Θ1 and Θ2 in Figure 2.7, which
are chosen in order to minimize the total energy spent during the phase. The three
passive sub–phases will be described in details in Section 3.3.2.

II) Variable line length. If line rolling/unrolling is suitably managed during the cycle,
energy can be generated also when the rail vehicle is moving against the wind. In
this case the operating phases of each KSU placed on the KG–carousel, namely
the traction and the unroll phases, are depicted in Figure 2.8. The unroll phase
approximately begins when the angular position Θ of the rail vehicle is such that
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Figure 2.8. KG–carousel configuration phases with variable line length.

the KSU is moving in the opposite direction with respect to the nominal wind:
such situation is identified by angle Θ0 in Figure 2.8. During the unroll phase,
the electric drives linked to the rail vehicle wheels act as motors to drag the KSU
against the wind. At the same time, the kite lines unroll, thus energy is generated
as in the traction phase of the KG–yoyo configuration. The difference between
the energy spent to drag the rail vehicle and the energy generated by unrolling
the lines gives the net energy generated during this phase. When the KSU starts
moving with wind advantage (i.e. its angular position is greater than Θ1 in 2.8),
the KG–carousel traction phase starts: the kite pulls the rail vehicle and the drives
linked to the wheels act as generators. Meanwhile, the kite lines are rolled back
in order to always start the next unroll phase with the same line length. Thus, in
the traction phase the net generated energy is given by the difference between the
energy generated by pulling the rail vehicle and the energy spent to recover the
lines. The MPC controllers employed in the KG–carousel with variable line length
are therefore designed to maximize such a net generated energy.

The modeling of the KiteGen generators and the design of the MPC controllers for each
of the operational phases of the KG–yoyo and KG–carousel configurations are described
in Chapter 3, together with the obtained numerical results.
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2.4 Naval application of KiteGen
Though this dissertation is focused on the application of the KiteGen concept for electric-
ity generation exploiting high–altitude wind flows, it is worth citing the project KiteNav,
started at Politecnico di Torino, Italy, in 2007. The basic idea is to place a KSU on a boat
(currently a small 10–m long boat is being considered in the project) and to employ the
airfoil either to provide auxiliary propulsion by towing the boat (like the idea studied in
[44] or the application being developed by [34]) or to generate electric energy that is then
supplied to a stack of batteries. The latter provide energy to the boat’s electric engines.
Indeed, also in the naval application of KiteGen advanced control and optimization play
an important role, since they are employed to control the kite and to devise the optimal
operating conditions of both the kite and the boat. It is interesting to note that, according
to the performed preliminary analysis, by generating energy through an operating cycle
like the one of KG–yoyo and supplying it to the batteries, it is possible for the boat to
travel in the opposite direction with respect to the wind (contrary to what happens with
standard sailboats). To assess the potentials of this concept, experimental tests will be
performed in 2009.
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Chapter 3

Control of KiteGen

This Chapter deals with the modeling, control and simulation of KiteGen systems. At first,
a dynamic model for the KG–yoyo and KG–carousel configurations is derived. Then, the
Nonlinear Model Predictive Control (NMPC, see e.g. [45]) design is carried out and
its approximation is computed using the “global” optimal Set Membership technique (see
Section 11.1), in order to improve the on–line computational efficiency. Finally, numerical
simulations are performed to evaluate the energy generation potentials of KiteGen.

3.1 KiteGen models
The kite model described in this dissertation is derived from the simpler one originally
developed in [46]. More aspects are added in this study, like the computation of the air-
foil attack angle (with consequent varying aerodynamical characteristics) and the model
of the vehicle in the KG–carousel configuration.
A fixed Cartesian coordinate system (X,Y,Z) is considered (see Figure 3.1(b)), with X
axis aligned with the nominal wind speed vector direction. Wind speed vector is repre-
sented as ~Wl = ~W0 + ~Wt, where ~W0 is the nominal wind, supposed to be known and
expressed in (X,Y,Z) as:

~W0 =




Wx(Z)
0
0


 (3.1)

Wx(Z) is a known function which gives the wind nominal speed at the altitude Z. The
term ~Wt may have components in all directions and is not supposed to be known, account-
ing for wind unmeasured turbulence.
A second, possibly moving, Cartesian coordinate system (X ′,Y ′,Z ′) is considered, cen-
tered at the Kite Steering Unit (KSU) location. In this system, the kite position can be
expressed as a function of its distance r from the origin and of the two angles θ and φ,
as depicted in Figure 3.1(a), which also shows the three unit vectors eθ, eφ and er of a
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local coordinate system centered at the kite center of gravity. Unit vectors (eθ, eφ, er) are
expressed in the moving Cartesian system (X ′,Y ′,Z ′) by:

(
eθ eφ er

)
=




cos (θ) cos (φ) − sin (φ) sin (θ) cos (φ)
cos (θ) sin (φ) cos (φ) sin (θ) sin (φ)
− sin (θ) 0 cos (θ)


 (3.2)

In the KG–carousel configuration, the KSU angular position Θ is defined by the direction

(a) (b)

Figure 3.1. (a) Model diagram of a single KSU (b) Model diagram of a single KSU
moving on a KG–carousel.

of axes X and X ′ (see Figure 3.1(b)).
Applying Newton’s laws of motion to the kite in the local coordinate system (eθ, eφ, er),
the following dynamic equations are obtained:

θ̈ =
Fθ

mr

φ̈ =
Fφ

mr sin θ

r̈ =
Fr

m

(3.3)

where m is the kite mass. Forces Fθ, Fφ and Fr include the contributions of gravity
force ~F grav of the kite and the lines, apparent force ~F app, kite aerodynamic force ~F aer,
aerodynamic drag force ~F c,aer of the lines and traction force F c,trc exerted by the lines on
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the kite. Their relations, expressed in the local coordinates (eθ, eφ, er) are given by:

Fθ = F grav
θ + F app

θ + F aer
θ + F c,aer

θ

Fφ = F grav
φ + F app

φ + F aer
φ + F c,aer

φ

Fr = F grav
r + F app

r + F aer
r + F c,aer

r − F c,trc
(3.4)

The following subsections describe how each force contribution is taken into account in
the model.

3.1.1 Gravity forces
The magnitude of the overall gravity force applied to the kite center of gravity is the sum
of the kite weight and the contribution F c,grav given by the weight of the lines. Assuming
that the weight of each line is applied at half its length (i.e. r/2), F c,grav can be computed
considering the rotation equilibrium equation around the point where the lines are attached
to the KSU:

r cos(θ)

2

2 ρl π d2
l r

4
g = F c,gravr cos(θ) (3.5)

where g is the gravity acceleration, ρl is the line material density and dl is the diameter of
each line. Thus, the magnitude of the overall gravity force ~F grav can be computed as:

|~F grav| = mg + F c,grav =

(
m +

ρl π d2
l r

4

)
g (3.6)

Vector ~F grav in the fixed coordinate system (X,Y,Z) is directed along the negative Z
direction. Thus, using the rotation matrix (3.2) the following expression is obtained for
the components of ~F grav in the local coordinates (eθ, eφ, er):

~F grav =




F grav
θ

F grav
φ

F grav
r


 =




(
m +

ρl π d2
l r

4

)
g sin (θ)

0

−
(

m +
ρl π d2

l r

4

)
g cos (θ)




(3.7)

3.1.2 Apparent forces

The components of vector ~F app depend on the considered kite generator configuration: in
particular, for the KG–yoyo configuration centrifugal inertial forces have to be consid-
ered:

F app
θ = m(φ̇2r sin θ cos θ − 2ṙθ̇)

F app
φ = m(−2ṙφ̇ sin θ − 2φ̇θ̇r cos θ)

F app
r = m(rθ̇2 + rφ̇2 sin2 θ)

(3.8)
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In the case of KG–carousel configuration, since each KSU moves along a circular tra-
jectory with constant radius R (see Figure 3.1(b)), also the effects of the KSU angular
position Θ and its derivatives have to be taken into account in apparent force calculation,
therefore:

F app
θ = m(Θ̇2R cos θ cos φ− Θ̈R cos θ sin φ + (Θ̇ + φ̇)2r sin θ cos θ − 2ṙθ̇)

F app
φ = m(−(2ṙφ̇ + Θ̈r) sin θ − 2(Θ̇ + φ̇)θ̇r cos θ − Θ̈R cos φ− Θ̇2R sin φ)

F app
r = m(rθ̇2 + r(Θ̇ + φ̇)2 sin2 θ − Θ̈R sin θ sin φ + Θ̇2R sin θ cos φ)

(3.9)

3.1.3 Kite aerodynamic forces

Aerodynamic force ~F aer depends on the effective wind speed ~We, which in the local sys-
tem (eθ, eφ, er) is computed as:

~We = ~Wl − ~Wa (3.10)

where ~Wa is the kite speed with respect to the ground. For the KG–yoyo configuration
~Wa can be expressed in the local coordinate system (eθ, eφ, er) as:

~Wa =




θ̇ r

φ̇ r sin θ
ṙ


 (3.11)

while for the KG–carousel configuration:

~Wa =




θ̇ r + Θ̇ cos θ sin φR

(φ̇ + Θ̇) r sin θ + Θ̇ cos φR

ṙ + Θ̇ sin θ sin φR


 (3.12)

Let us consider now the kite wind coordinate system (~xw,~yw,~zw) (Figure 3.2(a)–(b)), with
the origin in the kite center of gravity, ~xw basis vector aligned with the effective wind
speed vector, pointing from the trailing edge to the leading edge of the kite, ~zw basis
vector contained in the kite symmetry plane and pointing from the top surface of the kite
to the bottom and wind ~yw basis vector completing the right handed system. Unit vector
~xw can be expressed in the local coordinate system (eθ, eφ, er) as:

~xw = −
~We

| ~We|
(3.13)

According to [46], vector ~yw can be expressed in the local coordinate system (eθ, eφ, er)
as:

~yw = ew(− cos(ψ) sin(η)) + (er × ew)(cos(ψ) cos(η)) + er sin(ψ) (3.14)
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Figure 3.2. (a) Scheme of the kite wind coordinate system (~xw,~yw,~zw) and body
coordinate system (~xb,~yb,~zb). (b) Wind axes (~xw, ~zw), body axes (~xb, ~zb) and angles
α0 and ∆α. (c) Command angle ψ

where:

ew =
~We − er(er · ~We)

| ~We − er(er · ~We)|
, η

.
= arcsin

(
~We · er

| ~We − er(er · ~We)|
tan(ψ)

)
(3.15)

Angle ψ is the control input, defined by

ψ = arcsin

(
∆l

d

)
(3.16)

with d being the distance between the two lines fixing points at the kite and ∆l the length
difference of the two lines (see Figure 3.2(c)). ∆l is considered positive if, looking the
kite from behind, the right line is longer than the left one. Equation (3.14) has been
derived in [46] in order to satisfy the requirements that ~yw is perpendicular to ~xw, that its
projection on the unit vector er is ~yw · er = sin(ψ) and that the kite is always in the same
orientation with respect to the lines. Angle ψ influences the kite motion by changing the
direction of vector ~F aer. Finally, the wind unit vector ~zw can be computed as:

~zw = ~xw × ~yw (3.17)

Then, the aerodynamic force ~F aer in the local coordinate system (eθ, eφ, er) is given by:

~F aer =




F aer
θ

F aer
φ

F aer
r


 = −1

2
CD Aρ | ~We|2 ~xw − 1

2
CL Aρ | ~We|2 ~zw (3.18)
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where ρ is the air density, A is the kite characteristic area, CL and CD are the kite lift
and drag coefficients. As a first approximation, the drag and lift coefficients are nonlinear
functions of the kite angle of attack α. To define angle α, the kite body coordinate system
(~xb,~yb,~zb) needs to be introduced (Figure 3.2(a)–(b)), centered in the kite center of gravity
with unit vector ~xb contained in the kite symmetry plane, pointing from the trailing edge
to the leading edge of the kite, unit vector ~zb perpendicular to the kite surface and pointing
down and unit vector ~yb completing a right–handed coordinate system. Such a system is
fixed with respect to the kite. The attack angle α is then defined as the angle between
the wind axis ~xw and the body axis ~xb (see Figure 3.2(b)). Note that in the employed
model, it is supposed that the wind axis ~xw is always contained in the kite symmetry
plane. Moreover, it is considered that by suitably regulating the attack points of the lines
to the kite, it is possible to impose a desired base angle of attack α0 to the kite: such an
angle (depicted in Figure 3.2(b)) is defined as the angle between the kite body axis ~xb and
the plane defined by local vectors eθ and eφ, i.e. the tangent plane to a sphere with radius
r. Then, the actual kite angle of attack α can be computed as the sum of α0 and the angle
∆α between the effective wind ~We and the plane defined by (eθ,eφ):

α = α0 + ∆α

∆α = arcsin

(
er · ~We

| ~We|

)
(3.19)

An example of functions CL(α) and CD(α) is reported in Figure 3.3(a), while the related
aerodynamic efficiency E(α) = CL(α)/CD(α) is reported in Figure 3.3(b). Such curves
refer to a Clark–Y kite with aspect ratio (i.e. length of leading edge divided by kite width)
equal to 3.19 (see Figure 3.4) and they have been obtained using CFD analysis with the
STAR–CCM+r code (see [47]).

3.1.4 Line forces
The lines influence the kite motion through their weight (see Section 3.1.1), their drag
force ~F c,aer and the traction force F c,trc. An estimate of the drag of the lines has been
considered in [42], where the overall angular momentum ~Md = r er× ~F c,aer exerted by the
line drag force is computed by integrating, along the line length, the angular momentum
given by the drag force acting on an infinitely small line segment:

~Md =

r∫

0


s er × −ρCD,l dl cos (∆α)

2

(
s | ~We|

r

)2

~xw


 ds

= r er × −ρCD,l Al cos (∆α)

8
| ~We|2 ~xw

(3.20)

where CD,l is the line drag coefficient and Al cos(∆α) = r dl cos(∆α) is the projection
of the line front area on the plane perpendicular to the effective wind vector (see Figure
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Figure 3.3. (a) Kite Lift coefficient CL (solid) and drag coefficient CD

(dashed) as functions of the attack angle α. (b) Aerodynamic efficiency E as
function of the attack angle α.

Figure 3.4. Geometrical characteristics of the Clark–Y kite considered for the CFD
analysis to compute the aerodynamic lift and drag coefficients CL(α) and CD(α)

3.5). Note that in [42] the total front line area Al = r dl is considered to compute Md:
such assumption is valid if the effective wind speed vector ~We is perpendicular to the kite
lines, otherwise it leads to a conservative estimate of the line drag force. The line drag
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Figure 3.5. Detail of the kite lines and their projection on the plane perpendic-
ular to the effective wind vector ~We.

force is then computed as:

~F c,aer =




F c,aer
θ

F c,aer
φ

F c,aer
r


 = −ρCD,l Al cos (∆α)

8
| ~We|2 ~xw (3.21)

As regards the traction force F c,trc, such a force is always directed along the local unit
vector er and cannot be negative in equation (3.4), since the kite can only pull the lines.
Moreover, F c,trc is measured by a force transducer on the KSU and, using a local controller
of the electric drives, it is regulated in such a way that ṙ(t) ≈ ṙref(t), where ṙref(t) is
chosen to achieve a good compromise between high line traction force and high line
winding speed. Basically, the stronger the wind, the higher the values of ṙref(t) that can
be set obtaining high force values. It results that, in the case of KG–yoyo configuration,
F c,trc(t) = F c,trc(θ,φ,r,θ̇,φ̇,ṙ,ṙref, ~We), while for the KG–carousel configuration F c,trc(t) =

F c,trc(θ,φ,r,Θ,θ̇,φ̇,ṙ,Θ̇,ṙref, ~We).

3.1.5 Vehicle motion in KG–carousel configuration
In the case of KG–carousel configuration, the motion law of the KSU along the circular
path of radius R has to be included too, with the following equation:

MΘ̈R = F c,trc sin θ sin φ− F gen (3.22)

where M is the total mass of the vehicle and the KSU and F gen is the force given by
the electric drives linked to the wheels. It is supposed that suitable kinematic constraints
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3.2 – Wind speed model

(e.g. rails) oppose to the centrifugal inertial force acting on the vehicle and to all the
components of the line force, except for the one acting along the tangent to the vehicle
path (i.e. F c,trc sin θ sin φ). Note that any viscous term is neglected in equation (3.22),
since the vehicle speed Θ̇R is kept very low as it will be shown in Section 3.4. F gen is
positive when the kite is pulling the vehicle toward increasing Θ values, thus generating
energy, and it is negative when the electric drives are acting as a motors to drag the vehicle
against the wind, when the kite is not able to generate a suitable pulling force. The force
F gen is calculated by a suitable local controller in order to keep the vehicle at constant
angular speed Θ̇ = Θ̇ref.

3.1.6 Overall model equations and generated power
The model equations (3.3)–(3.22) describe the system dynamics in the form:

ẋ(t) = f(x(t),u(t),Wx(t),ṙref(t),Θ̇ref(t), ~Wt(t)) (3.23)

where x(t) = [θ(t) φ(t) r(t) Θ(t) θ̇(t) φ̇(t) ṙ(t) Θ̇(t)]T are the model states and u(t) =
ψ(t) is the control input. Clearly, in the case of KG–yoyo configuration Θ = Θ̇ = Θ̇ref =
0. All the model states are supposed to be measured or estimated, to be used for feedback
control. The net mechanical power P generated (or spent) by the generator is the algebraic
sum of the power generated (or spent) by unrolling/recovering the lines and by the vehicle
movement:

P (t) = ṙ(t)F c,trc(t) + Θ̇(t) R F gen(t) (3.24)

For the KG–yoyo configuration the term Θ̇ R F gen = 0 and generated mechanical power
is only due to line unrolling.
Mechanical power is then converted into electric power by the drives linked to the drums
of the KSU and (in the case of KG–carousel configuration) to the vehicle wheels. An
overall efficiency ηdtl < 1 is considered to take into account the drive train losses, thus the
generated electrical power can be computed as:

Pelt(t) = ηdtl P (t) (3.25)

3.2 Wind speed model
The increase of wind speed with elevation is a key point in high–altitude wind power
generation, since one of the main advantages of KiteGen over wind turbines is that the kite
flies at higher altitudes with respect to the 50–150 m of wind turbines (see Section 1.2.1),
where stronger and more constant wind usually blows and, consequently, higher generated
power values can be obtained. Thus, in numerical simulation studies it is important to
consider a realistic nominal wind speed model Wx(Z) (3.1), to increase the significance
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3 – Control of KiteGen

of the obtained results. Different functional forms for Wx(Z) have been proposed in the
literature (see [6] and the references therein): in this work, the following logarithmic wind
shear model is considered:

Wx(Z) = W0

ln

(
Z

Zr

)

ln

(
Z0

Zr

) (3.26)

where Z0 is a reference elevation value and W0 is the corresponding reference wind speed
(i.e. W0 = Wx(Z0)), while Zr is the roughness factor of the considered site. For a given
site, parameters Z0, W0 and Zr can be computed using a least square procedure applied
to wind speed data collected at different altitudes using sounding stations. In particular,
in this work the data measured at several locations between 1996 and 2006, retrieved
from the database of the Earth System Research Laboratory of the National Oceanic &
Atmospheric Administration [27] have been analyzed. The parameters of some of the
computed wind shear models are resumed in Table 3.1. Figure 3.6 shows the wind shear
model and the related measured data collected at De Bilt, in The Netherlands. It can be
noted that the average wind speeds during winter months are higher than those measured
in summer: this phenomenon occurs in every considered site. Such models will be
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Figure 3.6. Wind shear model (solid line) and averaged experimental data (as-
terisks) related to the site of De Bilt, in The Netherlands, for winter (left) and
summer (right) months

employed for the simulation studies of Section 3.4, regarding the power obtained by the
KG–yoyo and KG–carousel generators, and for the Capacity Factor analyses of Chapter
6.
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Table 3.1. Wind shear model parameters for some sites in Italy and The Netherlands
Winter Summer

Site Z0 (m) W0 (m/s) Zr (m) Z0 (m) W0 (m/s) Zr (m)
Brindisi (Italy) 27.5 7.3 7.0 10−4 27.5 6.2 5.0 10−4

Cagliari (Italy) 27.5 6.7 8.0 10−4 32.5 6.6 2.2 10−6

Pratica di mare (Italy) 27.5 7.0 7.0 10−8 32.5 5.9 7.0 10−6

Trapani (Italy) 32.5 7.4 6.0 10−4 32.5 6.4 3.2 10−6

De Bilt (The Netherlands) 27.5 5.1 3.5 27.5 4.4 2.1

3.3 Nonlinear model predictive control application to Kite-
Gen

The control problem and related objectives are now described. As highlighted in Section
2.3, the main objective is to generate energy by a suitable control action on the kite. In
order to accomplish this aim, a two–phase cycle has been designed for each generator
configuration. A NMPC strategy is designed for each phase, according to its own cost
function, state and input constraints and terminal conditions.
The control move computation is performed at discrete time instants defined on the basis
of a suitably chosen sampling period ∆t. At each sampling time tk = k∆t, k ∈ N, the
measured values of the state x(tk) and of the nominal wind speed Wx(tk) are used to
compute the control move through the optimization of a performance index of the form:

J(U,tk,Tp) =

∫ tk+Tp

tk

L(x̃(τ),ũ(τ),Wx(τ),)dτ (3.27)

where Tp = Np∆t, Np ∈ N is the prediction horizon, x̃(τ) is the state predicted inside
the prediction horizon according to the state equation (3.23), using x̃(tk) = x(tk) and
the piecewise constant control input ũ(t) belonging to the sequence U = {ũ(t)}, t ∈
[tk,tk+Tp ] defined as:

ũ(t) =

{
ūi,∀t ∈ [ti,ti+1], i = k, . . . ,k + Tc − 1
ūk+Tc−1,∀t ∈ [ti,ti+1], i = k + Tc, . . . ,k + Tp − 1

(3.28)

where Tc = Nc∆t, Nc ∈ N, Nc ≤ Np is the control horizon.
The function L(·) in (3.27) is suitably defined on the basis of the performances to be
achieved in the considered operating phase. Moreover, in order to take into account phys-
ical limitations on both the kite behaviour and the control input ψ in the different phases,
constraints of the form x̃(t) ∈ X, ũ(t) ∈ U have been included too.
Thus the predictive control law is computed using a receding horizon strategy:
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1. At time instant tk, get x(tk).

2. Solve the optimization problem:

min
U

J(U,tk,Tp) (3.29a)

subject to (3.29b)
x̃(tk) = x(tk) (3.29c)

˙̃x(t) = f(x̃(t),ũ(t),ṙref(t),Θ̇ref(t),Wx(t)) ∀t ∈ (tk,tk+Tp ] (3.29d)
x̃(t) ∈ X, ũ(t) ∈ U ∀t ∈ [tk,tk+Tp ] (3.29e)

3. Apply the first element of the solution sequence U to the optimization problem as
the actual control action u(tk) = ũ(tk).

4. Repeat the whole procedure at the next sampling time tk+1.

Therefore the predictive controller results to be a nonlinear static function of the system
state x, the nominal measured wind speed Wx and the reference speed values ṙref, Θ̇ref

imposed to the local drive controllers of the KSU and of the vehicle in the KG–carousel
(see Sections 3.1.4 and 3.1.5):

ψ(tk) = κ(x(tk),Wx(tk),ṙref,Θ̇ref(tk)) = κ(w(tk)) (3.30)

As a matter of fact, an efficient NMPC implementation is required to ensure that the
control move is computed within the employed sampling time, of the order of 0.2 s.
This is obtained using the efficient implementation techniques based on Set Membership
approximation theory (see Part II of this dissertation). Such techniques allow to compute
off–line an approximated control law κSM(w) ≈ κ(w), with guaranteed performance and
stabilizing properties, whose on–line computational load is lower than the one required to
solve the optimization problem.
The cost functions and state and input constraints considered for the KG–yoyo and KG–
carousel configurations are now presented.

3.3.1 KG–yoyo cost and constraint functions
In the KG–yoyo configuration, the traction phase starts when the following conditions are
satisfied:

θI ≤ θ(t) ≤ θI

|φ(t)| ≤ φI

rI ≤ r(t) ≤ rI

(3.31)

with
0 < θI < θI < π/2

0 < φI < π/2
(3.32)
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Roughly speaking, the traction phase begins when the kite is flying in a symmetric zone
with respect to the X axis, at an altitude ZI such that rI cos θI ≤ ZI ≤ rI cos θI .
When the traction phase starts, a positive value ṙ of ṙref is set so that the kite flies with
increasing values of r while applying a traction force F c,trc on the lines, thus generating
energy. The value ṙ is chosen to achieve high power values and depends on the wind
speed: basically, the stronger the wind, the higher the values of ṙ that can be set obtaining
high generated power values (see Chapter 4 for more details on the optimal value of ṙ).
As anticipated, control system objective in the traction phase is to maximize the energy
generated in the interval [tk,tk + TP ]. Since the generated electrical power (3.25) at each
instant is Pelt(t) = ηdtlṙ(t)F

c,trc(t), the following cost function is chosen to be minimized
in MPC design (3.29):

J(tk) = −
∫ tk+Tp

tk

(ηdtlṙ(τ)F c,trc(τ))dτ (3.33)

During the whole phase the following state constraint is considered to keep the kite suffi-
ciently far from the ground:

θ(t) ≤ θ (3.34)

with θ < π/2 rad. Actuator physical limitations give rise to the constraints:

|ψ(t)| ≤ ψ

|ψ̇(t)| ≤ ψ̇
(3.35)

As a matter of fact, other technical constraints are added to force the kite to go along
“figure eight” trajectories rather than circular ones, in order to prevent the lines from
wrapping one around the other. Such constraints force the kite φ angle to oscillate with
double period with respect to θ angle, thus generating the proper kite trajectory.
To complete the traction phase description, ending conditions have to be introduced. Each
kite line is initially rolled around a drum and unrolls while the kite gets farther. When r
reaches a maximal value r it is needed to wrap the lines back, in order to make the KG–
yoyo able to start a new cycle. Therefore, when the following condition is reached the
traction phase ends and the passive phase can start:

r(t) ≥ r (3.36)

As described in Section 2.3.1, two possible alternative maneuvers can be employed in the
passive phase.

I) Low power maneuver. The low power maneuver has been divided into three sub–
phases which allow to wrap back the lines using the least amount of energy, thus
maximizing the net energy gain of the whole cycle.
In the first sub–phase, ṙref(t) is chosen to smoothly decrease towards zero from
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value ṙ. The control objective is to move the kite in a zone with low values of
θ and high values of |φ|, where effective wind speed ~We and force F c,trc are low
and the kite is ready to be recovered with low energy expense. Positive values θII

and φ
II

< π/2 of θ and φ respectively are introduced to identify this zone. The
following cost function is considered:

J(tk) =

∫ tk+Tp

tk

θ2(τ) + (|φ(τ)| − π/2)2 dτ (3.37)

Once the following condition is reached:

|φ(t)| ≥ φ
II

θ(t) ≤ θII
(3.38)

the first sub–phase ends.
Then, ṙref(t) is chosen to smoothly decrease from zero to a negative constant value
ṙ. Such a value is chosen to give a good compromise between high winding back
speed and low F c,trc values. During this passive sub–phase, the control objective is
to minimize the energy spent to wind back the lines, thus the following cost function
is considered:

J(tk) =

∫ tk+Tp

tk

|ṙ(τ)|F c,trc(τ)dτ (3.39)

The second sub–phase ends when the following condition is satisfied:

rI ≤ r(t) ≤ rI (3.40)

which means when the line length r is among the possible traction phase initial state
values. Then, the third passive sub–phase begins and ṙref(t) is chosen to smoothly
increase towards zero from the negative value ṙ. Control objective is to move the
kite in the traction phase starting zone, expressed by (3.31). Cost function J(tk) is
set as follows:

J(tk) =

∫ tk+Tp

tk

(|θ(τ)− θ1|+ |φ(τ)|) dτ (3.41)

where θ1 = (θI + θI)/2.

II) Wing glide maneuver. The wing glide maneuver is divided into three sub–phases.
In the first one, ṙref(t) is chosen to smoothly decrease towards zero from value ṙ.
The control objective is to move the kite in a zone with lower values of θ to prepare
for the subsequent wing glide. A positive values θIII of θ is introduced to identify
this zone. The following cost function is considered:

J(tk) =

∫ tk+Tp

tk

θ2(τ)dτ (3.42)
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Once the following condition is reached:

θ(t) ≤ θIII (3.43)

the first sub–phase ends. In the second sub–phase, a preliminary maneuver is per-
formed, during which a large length difference (approximately equal to the kite
wingspan) is issued between the two cables by pulling them in subsequent order.
This way, the airfoil’s lift coefficient CL drops to a (low) value CL,WG (while the
drag coefficient increases to a value CD,WG > CD) and, consequently, also the
traction force Fc is reduced, making it possible to wind back the lines with small
energy expense. The duration of the described preliminary phase is quite short and
the control system is only required to keep the airfoil stability and avoid constraint
violation. Then, the reference winding speed ṙref(t) is chosen to smoothly decrease
from zero to a negative constant value ṙ. Such a value is chosen to give a good
compromise between high winding back speed and low F c,trc values. During this
passive sub–phase, control objective is to minimize the energy spent to wind back
the lines, thus the following cost function is considered:

J(tk) =

∫ tk+Tp

tk

|ṙ(τ)|F c,trc(τ)dτ (3.44)

The second sub–phase ends when the following condition is satisfied:

rI ≤ r(t) ≤ rI (3.45)

which means when the line length r is among the possible traction phase initial state
values. Then, the third passive sub–phase begins and ṙref(t) is chosen to smoothly
increase towards zero from the negative value ṙ. Control objective is to move the
kite in the traction phase starting zone, expressed by (3.31). Cost function J(tk) is
set as follows:

J(tk) =

∫ tk+Tp

tk

(|θ(τ)− θ1|+ |φ(τ)|) dτ (3.46)

where θ1 = (θI + θI)/2.

Independently on the employed recovery maneuver, the ending conditions for the whole
passive phase coincide with the starting conditions of the traction phase. Moreover, during
the whole passive phase the state constraint expressed by (3.34) and the input constraints
(3.35) are considered in the MPC optimization problems.

3.3.2 KG–carousel cost and constraint functions
In the KG–carousel configuration, the force F gen applied by the electric drives to the
vehicle wheels is such that the vehicle moves at reference angular speed Θ̇ref, which is
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kept constant and it is chosen in order to optimize the net energy generated in the cycle.
Since the angular speed is constant, each kite placed on the KG–carousel can be controlled
independently from the others, provided that their respective trajectories are such that their
lines never collide. Thus, a single vehicle is considered in the following. The cost and
constraint functions employed in the two different strategies described in Section 2.3.2
are now presented.

I) Constant line length. As described in Section 2.3.2, the operation of a KG–carousel
with constant line length, equal to a chosen value rconst, is divided into two phases,
denoted as the traction and the passive ones. In the traction phase, the aim is to
obtain as much energy as possible from the wind stream. The traction phase begins
when the vehicle angular position Θ with respect to the nominal wind vector ~W0 is
such that the kite can pull the vehicle (see Figure 2.7). Thus, the following traction
phase initial condition is considered:

Θ(t) ≥ Θ3 (3.47)

Control system objective adopted in the traction phase is to maximize the energy
generated in the interval [tk,tk + TP ], while satisfying constraints concerning state
and input values. Power (3.25) generated at each instant is P = ηdtlΘ̇ T gen, since
ṙ = 0 (i.e. constant line length is used), thus the following cost function is chosen
to be minimized in MPC design (3.29):

J(tk) = −
∫ tk+Tp

tk

(
ηdtlΘ̇(τ)T gen(τ)

)
dτ (3.48)

During the whole phase the following state constraint is considered to keep the kite
sufficiently far from the ground:

θ(t) ≤ θ (3.49)

with θ < π/2. Actuator physical limitations give rise to the constraints:

|ψ(t)| ≤ ψ

|ψ̇(t)| ≤ ψ̇
(3.50)

As a matter of fact, other technical constraints have been added to force the kite
to go along “figure eight” trajectories rather than circular ones as they cause the
winding of the lines. Such constraints force the kite φ angle to oscillate with double
period with respect to θ angle, thus generating the proper kite trajectory. The trac-
tion phase ends when the vehicle angular position is such that the kite is no more
able to pull the vehicle:

Θ(t) ≥ Θ0 (3.51)
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with Θ0 ≤ π/2 according to Figure 2.7. When the condition (3.51) is reached the
passive phase can start. During this phase, the electric generators act as motors
to drag the vehicle between angles Θ0 and Θ3. Meanwhile, the kite is moved in
a proper position in order to start another traction phase. The passive phase has
been divided into three sub–phases. Transitions between each two subsequent drag
sub–phases are marked by suitable values of the vehicle angular position, Θ1 and
Θ2, which are chosen in order to minimize the total energy spent during the phase.
In the first sub–phase, the control objective is to move the kite in a zone with low
values of θ, where effective wind speed ~We and pulling force F c component in plane
(X,Y ) (i.e. F c sin θ sin φ) are much lower. A positive value θI of θ is introduced to
identify this zone. The following cost function is considered:

J(tk) =

∫ tk+Tp

tk

(θ(τ)− θI)
2dτ (3.52)

Once the following condition is reached:

Θ ≥ Θ1 (3.53)

the first passive phase part ends. In the second drag sub–phase, control objective is
to change the kite angular position φ toward values which are suitable to begin the
traction phase. Thus, a value φI is introduced such that

π/2 < φI < π (3.54)

and the following cost function is considered:

J(tk) =

∫ tk+Tp

tk

(φ(τ)− φI)
2dτ (3.55)

The second sub–phase ends when the following condition is satisfied:

Θ ≥ Θ2 (3.56)

Then, the third drag sub–phase begins: control objective is to increase the kite angle
θ toward a suitable value θII such that:

π/4 < θII < π/2 (3.57)

thus preparing the generator for the following traction phase. Cost function J(tk)
is set as follows:

J(tk) =

∫ tk+Tp

tk

(θ(τ)− θII)
2dτ (3.58)

Ending conditions for the whole passive phase coincide with starting conditions
for the traction phase (3.47). During the whole passive phase the state constraint
expressed by (3.49) and the input constraints (3.50) are considered in the control
optimization problems.
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II) Variable line length. The KG–carousel operation with variable line length has been
conceived to generate energy also when the vehicle is moving against the wind, by
exploiting the line unrolling (see Section 2.3.2). The related operating phases are
denoted as the traction and the unroll ones. The traction phase begins when the
KSU angular position Θ is such that, with respect to the nominal wind vector ~W0,
the kite can pull the vehicle (see Figure 2.7). Thus, the following traction phase
initial condition is considered:

Θ(t) ≥ Θ1 (3.59)

At the beginning of the traction phase, the line length is equal to a value r1 resulting
from the previous unroll phase (see Section 2.3.2). Thus, a value ṙtrc < 0 for
reference speed ṙref is set during the traction phase in order to roll back the lines
and begin the next unroll phase with a suitable line length value r0. Recalling that
electrical power (3.25) obtained at each instant is the sum of the effects given by
line unrolling and vehicle movement, the following cost function is chosen to be
minimized in MPC design (3.29):

J(tk) = −
∫ tk+Tp

tk

(
ηdtlṙ(τ)F c,trc(τ) + ηdtlRΘ̇(τ)F gen(τ)

)
dτ (3.60)

The traction phase ends when the KSU angular position Θ is such that the kite is no
more longer able to pull the vehicle:

Θ(t) ≥ Θ0 (3.61)

with Θ0 ≤ π/2 according to Figure 2.7.
When condition (3.61) is reached, the unroll phase starts and the electric drives
linked to the vehicle wheels act as motors to drag the KSU between angles Θ0 and
Θ1. Meanwhile, a suitable course of the reference ṙref is set to make the unrolling
speed ṙ smoothly reach the positive constant value ṙc, so that energy can be gener-
ated while the KSU moves against the nominal wind flow. During the unroll phase,
the line length increases from the starting value r0 to a final value r1 > r0. As re-
gards the choice of ṙc, note that the mechanical power which opposes to the vehicle
movement due to the line traction force is:

Pres(t) = |ηdtlRΘ̇(t) F c,trc(t) sin θ(t) sin φ(t)| ≤ |ηdtlRΘ̇(t) F c,trc(t)| (3.62)

The power generated by line unrolling is:

Pgen(t) = |ṙ(t)F c,trc(t)| (3.63)

thus if ṙ(t) > RΘ̇(t) the net power Pgen(t)−Pres(t) is positive and as a first approx-
imation, without considering friction forces and with the same efficiency in electric
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power generation due to line unrolling and due to the vehicle movement, energy is
generated. Therefore, a good choice for ṙc would be:

ṙc > RΘ̇ref (3.64)

However, the reference unroll speed ṙc should not be too high in order to keep
the final line length r1 below a reasonable value r (i.e. 1000–1200 m). Since
r1 ' r0 + ṙcR(Θ1 −Θ0)/(RΘ̇ref), the following choice is made:

ṙc ' r − r0

(Θ1 −Θ0)
Θ̇ref (3.65)

The cost function considered in MPC design for the unroll phase is the same as for
the traction phase (3.60), to maximize the net generated energy:

J(tk) = −
∫ tk+Tp

tk

(
ṙ(τ)F c,trc(τ) + RΘ̇(τ)F gen(τ)

)
dτ (3.66)

During the whole KG–carousel cycle with variable line length, the constraints (3.49)–
(3.50) are considered, as well as other technical constraints to force the kite to go
along “figure eight”, as already described.

3.3.3 Fast model predictive control of KiteGen
As already anticipated, an efficient implementation of MPC is needed in KiteGen to per-
form the control computation within the chosen sampling interval. In particular, Set Mem-
bership approximation techniques, studied and developed in Part II of this dissertation, are
employed to implement the designed predictive control laws for KiteGen generators. The
adopted approximation method is denoted as the “global” optimal SM technique and it is
now briefly resumed (for complete analyses and details about the theoretical properties of
this approach, see Section Part II of this thesis).
The main idea is to derive, using SM methodology, an approximating function κSM of
the exact predictive control law ψ(tk) = κ(w(tk)) (3.30). Such approximating function
guarantees a given degree of accuracy and its computation is faster than solving the con-
strained optimization problem (3.29) considered in MPC design.
To be more specific, consider a bounded region W ⊂ R11 where w can evolve (indeed,
with the KG–yoyo configuration the subset W ⊂ R8, since variables Θ, Θ̇ and Θ̇ref are not
present in the regressor w). A number ν of values of κ(w) may be derived by performing
off–line the MPC procedure starting from a set of values Wν = {w̃k ∈ W, k = 1, . . . ,ν},
so that:

ψ̃k = κ(w̃k), k = 1, . . . ,ν (3.67)

The aim is to derive, from these known values of ψ̃k and w̃k and from known properties
of κ, an approximation κSM of κ and a measure of the approximation error. In order to
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achieve this goal, a Set Membership approach is employed. Basic to this approach is the
observation that in order to derive a measure of the approximation error achieved by any
method, the knowledge of κ(w̃k), k = 1, . . . ,ν is not sufficient, but some additional
information on κ is needed. In the case of KiteGen control it is assumed that κ ∈ Fγ ,
where Fγ is the set of all Lipschitz functions on W , with Lipschitz constant γ. An addi-
tional information to be used in the approximation is the input saturation condition giving
|κ(w)| ≤ ψ̄. These information on function κ, combined with the knowledge of the value
of the function at the points w̃k ∈ W, k = 1, . . . ,ν, allows to conclude that κ ∈ FFS,
where the set FFS (Feasible Functions Set), defined as:

FFS = {κ ∈ Fγ : |κ(w)| ≤ ψ̄; κ(w̃k) = ψ̃k, k = 1, . . . ,ν} (3.68)

summarizes the overall information on κ. Making use of such overall information, Set
Membership theory allows to derive an optimal estimate of κ and its approximation er-
ror, in term of the Lp(W ) norm defined as ‖κ‖p

.
=

[∫
W
|κ (w)|p dw

] 1
p , p ∈ [1,∞) and

‖κ‖∞ .
=ess- sup

w∈W
|κ (w)|. For given κSM ≈ κ, the related Lp approximation error is

‖κ− κ̂‖p. This error cannot be exactly computed, but its tightest bound is given by:
∥∥κ− κSM

∥∥
p
≤ sup

κ̃∈FFS

∥∥κ̃− κSM
∥∥

p

.
= E(κSM) (3.69)

where E(κSM) is called (guaranteed) approximation error.
A function κOPT is called an optimal approximation if:

E(κOPT) = inf
κ̂

E(κSM)
.
= rp

The quantity rp, called radius of information, gives the minimal Lp approximation error
that can be guaranteed.
Define:

κ (w)
.
= min

[
ψ̄, min

k=1,...,ν

(
ψ̃k + γ ‖w − w̃k‖

)]

κ (w)
.
= max

[
−ψ̄, max

k=1,...,ν

(
ψ̃k − γ ‖w − w̃k‖

)] (3.70)

It results that the function:

κOPT(w) =
1

2
[κ (w) + κ (w)] (3.71)

is an optimal approximation for any Lp(W ) norm, with p ∈ [1,∞] (see Section 11.1).
Moreover, the approximation error of κOPT is pointwise bounded as:

|κ(w)− κ∗(w)| ≤ 1

2
|κ(w)− κ(w)|, ∀w ∈ W
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and it is pointwise convergent to zero:

lim
ν→∞

|κ(w)− κOPT(w)| = 0, ∀w ∈ W (3.72)

Thus, evaluating sup
w∈W

|κ(w) − κ(w)|, it is possible to decide if the chosen ν is sufficient

to achieve a desired accuracy in the estimation of κ or if ν has to be increased.
An estimate γ̂ of γ can be derived as follows:

γ̂ = inf
γ:κ(w̃k)≥ψ̃k, k=1,...,ν

γ (3.73)

Such estimate is convergent to γ:
lim

ν→∞
γ̂ = γ (3.74)

Note that convergence results (3.72) and (3.74) hold if lim
ν→∞

d(Wν ,W ) = 0, where d(Wν ,W )

is the Hausdorff distance between sets Wν and W (see Chapters 8–9). Such a condition
is satisfied if, for example, Wν is obtained by uniform gridding of W .
Thus, the approximated MPC control can be implemented on–line, by simply evaluating
the function κOPT(wtk) at each sampling time:

ψtk = κOPT(wtk)

Indeed, as ν increases, the approximation error decreases at the cost of increased compu-
tation time and memory usage. Thus, a tradeoff between approximation accuracy, compu-
tational efficiency and memory requirements have to be issued. This can be also achieved,
other than by changing the value of ν, by using one of the other techniques developed in
this dissertation and described in Chapters 11–12.

3.4 Simulation results
This Section includes some of the simulation results obtained with the described KG–
yoyo and KG–carousel models and the related control strategies (more results can be
found in [9, 10, 11, 12, 13, 14]). In all of the presented simulation tests, the same kite
and cable characteristics and nominal wind speed profile are used. In particular, Table 3.2
shows the numerical values of the model parameters: a 500–m2 kite is considered. The
functions employed to compute the aerodynamic lift and drag coefficients are showed
in Figure 3.7. The cable diameter has been dimensioned, through trial–and–error proce-
dures, in order to support the traction forces generated by the considered kite, according
to the breaking load characteristic of the polyethylene fiber composing the lines (see Sec-
tion 5.2), reported in Figure 3.8. A safety coefficient of 1.2 has been considered in the
dimensioning. As regards the nominal wind speed, the profile employed in the simula-
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Figure 3.7. Lift and drag coefficients employed in the numerical simulations, as
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Figure 3.8. Minimum breaking load of the cable as a function of its diameter.

tion is given by the wind shear model (3.26), computed in Section 3.2 considering the data
collected at De Bilt airport during the summer months (i.e. with Z0 = 27.5 m, Zr = 2.1 m
and W0 = 4.38 m/s, see Table 3.1 and Figure 3.6). Moreover, uniformly distributed ran-
dom wind turbulence ~Wt has also been introduced, with maximum absolute value along
each direction equal to 3 m/s, i.e. about 33% of the nominal wind speed at 400 m of
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Table 3.2. Model parameters employed in the simulation tests of KiteGen
m 300 kg Kite mass
A 500 m2 Characteristic area
dl 0.03 m Diameter of a single line
ρl 970 kg/m3 Line density
CL,WG 0.1 Kite lift coefficient during wing glide maneuver
CD,WG 0.5 Kite drag coefficient during wing glide maneuver
CD,l 1.2 Line drag coefficient
α0 3.5◦ Base angle of attack
ρ 1.2 kg/m3 Air density
ηdtl 0.8 Drive train efficiency

altitude.

3.4.1 KG–yoyo configuration

The KG–yoyo configuration has been tested in simulation using either the low power
maneuver or the wing glide maneuver.

I) KG–yoyo with low power recovery maneuver. The results related to three complete
cycles are reported. The numerical values of the parameters and constraints that de-
fine the operational cycle and the controller (introduced in Sections 2.3.1 and 3.3.1)
are reported in Table 3.3. Figure 3.9(a) shows the obtained course of the line length,
which is kept between 550 m and 910 m. The kite trajectory during three complete
KG–yoyo cycles is reported in Figure 3.9(b). The kite follows “figure eight” or-
bits during the traction phase, thus preventing line entangling. The kite elevation Z
goes from 200 m to 400 m during the traction phase, corresponding to a mean value
of θ(t) equal to 70◦, while the lateral angle φ(t) oscillates between ±20◦ with an
average value of zero. Indeed, the kite flies fast in crosswind direction during the
traction phase: as indicated in [8] and as it will be pointed out in Chapter 4, such
a way of flying is the one that maximizes the traction forces on the cables. Note
that the kite trajectory is not imposed a priori here, but it is a result of the choice of
the cost function in the MPC control design, i.e. to maximize the generated energy.
The power generated in the simulation is reported in Figure 3.10(a): the mean value
is 1.45 MW. Note that the considered wind turbulence, though quite high does not
cause system instability, showing the control system robustness. The course of the
effective wind speed magnitude | ~We| is reported in Figure 3.10(b): mean values of
280 km/h during the traction phase and 95 km/h during the passive phase are ob-
tained. Note that in a commercial 2–MW wind turbine with a 90–m diameter rotor,
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Table 3.3. KG–yoyo configuration with low power maneuver: state and input constraints,
cycle starting and ending conditions and control parameters.

θI 55◦ Traction phase starting conditions
φI 45◦

r 550 m
r 900 m 1st passive sub–phase starting conditions
φ

II
45◦ 2nd passive sub-phase starting conditions

θII 20◦

θ 75◦ State constraint
ψ 6◦ Input constraints
ψ̇ 20◦/s
ṙ 1.8 m/s Traction phase reference ṙref

ṙ -2.0 m/s Passive phase reference ṙref

Tc 0.2 s Sample time
Nc 1 steps Control horizon
Np 10 steps Prediction horizon

whose nominal rotor speed is 14.9 rpm (see [48]), the blade tip has an absolute tan-
gential speed of about 70 m/s. Considering a wind flow of 12 m/s perpendicular to
the rotor, the resulting effective wind speed on the outer part of the blade is equal
to about 71 m/s, i.e. 255 km/h. Such a value is quite similar to that obtained by the
kite in the performed simulation tests, according to the KiteGen concept (see Fig-
ure 2.1 in Chapter 2) The courses of the kite attack angle and consequent lift and
drag coefficients are reported in Figure 3.11(a)–(b). The related kite aerodynamic
efficiency is between 13 and 16 in the traction phases, with a mean value of 13.8.

II) KG–yoyo with wing glide recovery maneuver. The results related to three complete
cycles are reported. The numerical values of the parameters and constraints that de-
fine the operational cycle and the controller (introduced in Sections 2.3.1 and 3.3.1)
are reported in Table 3.4. The obtained line length and kite trajectory are reported in
Figures 3.12(a) and 3.12(b) respectively. The line length is kept between 850 m and
910 m, making a single cycle much shorter than that obtained with the low power
maneuver (also considering the higher winding back speed of -8 m/s, see Tables
3.3–3.4). As regards the kite trajectory, it can be seen that the kite follows “figure
eight” orbits during the traction phase and that the kite elevation Z goes from about
350 m to 410 m during the traction phase, corresponding to a mean value of θ(t)
equal to 63◦, while the lateral angle φ(t) oscillates between±10◦ with zero in aver-
age. Also in this case the kite is flying fast in crosswind direction, maximizing the
traction force on the cables. The kite trajectory during the whole cycle is confined
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Figure 3.9. (a) Line length r(t) and (b) kite trajectory during three complete KG–yoyo
cycles with low power recovery maneuver and random wind disturbances.
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Figure 3.10. (a) Average (dashed) and actual (solid) generated power and (b) effec-
tive wind speed magnitude | ~We| during three complete KG–yoyo cycles with low power
recovery maneuver and random wind disturbances.

in a polyhedral space region of about (300×300×50) meters along the X,Y,Z axes
respectively: this can be taken into account for the design of wind farms employing
several KG–yoyo generators in the same area, to choose the position of the different
KSUs in order to avoid interference between their respective kites (see Section 4.4).
The power generated in the simulation is reported in Figure 3.13(a): the mean
value is 2.16 MW. Such a value is much higher than that obtained with the low
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Figure 3.11. Kite (a) attack angle and (b) lift and drag coefficients during three KG–yoyo
cycles with low power recovery maneuver and random wind disturbances.

Table 3.4. KG–yoyo configuration with wing glide maneuver: state and input constraints,
cycle starting and ending conditions, control parameters.

θI 55◦ Traction phase starting conditions
φI 45◦

r 850 m
r 900 m Passive phase starting condition
θIII 50◦ Wing glide starting condition
θ 66◦ State constraint
ψ 6◦ Input constraints
ψ̇ 20◦/s
ṙ 1.8 m/s Traction phase reference ṙref

ṙ -8.0 m/s Passive phase reference ṙref

Tc 0.2 s Sample time
Nc 1 steps Control horizon
Np 10 steps Prediction horizon

power passive phase, mainly due to the reduced duration of the recovery maneu-
ver. Thus, the wing glide maneuver gives better energy generation performance
than the low power one. The considered wind turbulence does not cause system
instability, showing again the control system robustness. The course of the wind
effective speed magnitude | ~We| is reported in Figure 3.13(b): mean values of 220
km/h during the traction phase and 55 km/h during the passive phase are obtained.

64



3.4 – Simulation results

The courses of the kite attack angle and consequent lift and drag coefficients are
reported in Figure 3.14(a)–(b). The related kite aerodynamic efficiency is between
12.8 and 15 in the traction phases, with a mean value of 13.5.
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Figure 3.12. (a) Line length r(t) and (b) kite trajectory during three complete KG–yoyo
cycles with wing glide recovery maneuver and random wind disturbances.
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Figure 3.13. (a) Mean (dashed) and actual (solid) generated power and (b) effective wind
speed magnitude | ~We| during three complete KG–yoyo cycles with wing glide recovery
maneuver and random wind disturbances.
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Figure 3.14. Kite (a) attack angle and (b) lift and drag coefficients during three KG–yoyo
cycles with wing glide recovery maneuver and random wind disturbances.

3.4.2 KG–carousel configuration
The KG–carousel configuration has been simulated considering either the constant line
length or the variable line length strategies, using the same kite and wind characteristics
as those employed with the KG–yoyo configuration. In particular, the characteristics of
the KG–carousel considered in the simulations are reported in Table 3.5. The functions
employed to compute the aerodynamic lift and drag coefficients are showed in Figure 3.7.

Table 3.5. KG–carousel configuration: model parameters.
m 300 kg Kite mass
A 500 m2 Characteristic area
M 10000 kg Vehicle mass
R 300 m KG–carousel radius
dl 0.03 m Diameter of a single line
ρl 970 kg/m3 Line density
CD,l 1 Line drag coefficient
ρ 1.2 kg/m3 Air density
α0 3.5◦ Base angle of attack

I) KG–carousel with constant line length The results related to three complete cycles
are reported here. The considered control parameters and the values of the state and
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input constraints are given in Table 3.6, together with the starting and ending con-
ditions for each phase (see Sections 2.3.2 and 3.3.2). Figure 3.15(a) shows the ob-

Table 3.6. KG–carousel with constant line length: cycle phases objectives and starting
conditions, state and input constraints and control parameters.

rconst 900 m Constant line length
Θ̇ref 0.01 rad/s Reference vehicle angular speed
Θ0 45◦ Passive phase starting condition
θI 10◦ 1st Passive sub-phase objective
Θ1 135◦ 2nd Passive sub-phase starting condition
φI 160◦ 2nd Passive sub-phase objective
Θ2 145◦ 3rd Passive sub-phase starting condition
θII 60◦ 3rd Passive sub-phase objective
Θ3 165◦ Traction phase starting condition
θ 75◦ State constraint
ψ 3◦ Input constraints
ψ̇ 20◦/s
Tc 0.2 s Sample time
Nc 1 steps Control horizon
Np 12 steps Prediction horizon

tained kite and vehicle trajectories during one complete cycle, while Figure 3.15(b)
shows some “figure eight” kite trajectories. The power generated during the three
cycles is reported in Figure 3.16(a): the mean value is 1.73 MW. Figure 3.16(b)
depicts the obtained course of the wind effective speed magnitude | ~We|: average
values of 250 km/h and 50 km/h, during the traction and the passive phases respec-
tively, are obtained. In particular, note that during the passive phase the effective
speed is much reduced, thus allowing to minimize the energy loss. As regards the
obtained aerodynamic efficiency, during the traction phase an average value equal
to 13.8 is obtained.
Note that since the fixed coordinate system (X,Y,Z) has been defined on the basis
of the nominal wind direction, a measurable change of the latter can be easily over-
come by rotating the whole coordinate system (X,Y,Z), thus obtaining the same
performances without changing neither the control system parameters nor the start-
ing conditions of the various phases.

II) KG–carousel with variable line length The results related to three complete cycles
are reported. The considered model and control parameters and the values of the
state and input constraints are given in Table 3.7, together with the starting and end-
ing conditions for each phase (see Sections 2.3.2 and 3.3.2). According to (3.65),
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Figure 3.15. (a) Kite and vehicle trajectories during a single KG–carousel cycle with
constant line length and random wind disturbances. (b) KG–carousel with constant line
length: some “figure eight” kite trajectories during the traction phase.
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Figure 3.16. Simulation results of three complete cycles of a KG–carousel with constant
line length and random wind disturbances. (a) Mean (dashed) and actual (solid) generated
power and (b) effective wind speed magnitude | ~We|.

the employed value of ṙc during the unroll phase is

ṙc = 2.77 ' 2.98 =
r − r0

(Θ1 −Θ0)
Θ̇ref

The obtained course of r(t) is reported in Figure 3.17(a). The line length is kept
between 500 m and 1000 m and its mean value is equal to 747 m. Figure 3.17(b)
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Table 3.7. KG–carousel configuration with variable line length: control and
operational cycle parameters.

r0 500 m Minimal line length
r 1000 m Maximal line length
ṙc 2.77 m/s Reference line unrolling speed
Θ̇ref 0.0167 rad/s Reference vehicle angular speed
Θ0 5◦ Unroll phase starting condition
Θ1 165◦ Traction phase starting condition
θ 75◦ State constraint
ψ 3◦ Input constraints
ψ̇ 20◦/s
Tc 0.2 s Sample time
Nc 1 step Control horizon
Np 12 steps Prediction horizon

shows the obtained kite and vehicle trajectories. The power generated during the
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Figure 3.17. Simulation results of a KG–carousel with variable line length and random
wind disturbances. (a) Line length r(t) during three complete cycles. (b) Kite and vehicle
trajectories during a single cycle.

two cycles is reported in Figure 3.18(a): the mean value is 1.62 MW. Figure 3.18(b)
depicts the obtained course of the wind effective speed magnitude | ~We|, with an
average value of about 230 km/h. Note that in the case of variable line length,
the effective wind speed is always quite high, since the kite continuously flies in
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crosswind conditions. The obtained average power is quite similar to that achieved
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Figure 3.18. Simulation results of three complete cycles of a KG–carousel with variable
line length and random wind disturbances. (a) Mean (dashed) and actual (solid) generated
power and (b) effective wind speed magnitude | ~We|.

by the KG–carousel with constant line length, but the use of variable line length
makes it possible to achieve an overall power which is always positive, as expected.
However, it has to be noted that while the total generated power is kept between
about 0.2 MW and 5.0 MW, the contributions of either the vehicle motion or the
line unrolling are much more variable. Figure 3.19(a)–(b) shows the power gener-
ated by line rolling/unrolling and by the vehicle motion. It can be noted that the
average power given by the line unrolling is close to zero but the required rated
power is about 10 MW, that have to be either generated from or supplied to the
machine. As regards the generators linked to the vehicle wheels, their average con-
tribution is approximately equal to the overall average generated power, but their
rated power has to be up to 15 MW (i.e. almost ten times higher than the average
output power). This aspect represent a major drawback of the KG–carousel with
variable line length, as it is discussed in Section 3.4.3.

3.4.3 Comparison between KG–yoyo and KG–carousel configurations
On the basis of the simulation results presented in Sections 3.4.1 and 3.4.2, it is pos-
sible to make a first comparison between the proposed KiteGen configurations. Table
3.8 shows some data about the energy generation performance obtained in the numerical
simulations. The terms “KSU” and “vehicle” in the following refer to the power contribu-
tions given by the the line unrolling and by the vehicle movement respectively. The cycle
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Figure 3.19. Simulation results of three complete cycles of a KG–carousel with variable
line length and random wind disturbances. (a) Actual (solid) generated power by line
rolling/unrolling and average total generated power (dashed). (b) Actual (solid) generated
power by vehicle movement and average total generated power (dashed).

Table 3.8. Simulation results for KiteGen: average power, maximal power and cycle
efficiency obtained with KG–yoyo and KG–carousel configurations

Average
power Maximum power Cycle efficiency

KSU Vehicle Overall KSU Vehicle Total
KG–yoyo
(low power) 1.45 MW 5.0 MW – 5.0 MW 88% – 88%
KG–yoyo
(wing glide) 2.16 MW 5.5 MW – 5.5 MW 97% – 97%
KG–carousel
(constant line) 1.73 MW – 5.0 MW 5.0 MW – 98% 98%
KG–carousel
(variable line) 1.65 MW 10.0 MW 14.0 MW 5.0 MW -23% 63% 99%

efficiency in Table 3.8 has been computed according to the following equation:

ηcycle =

tend∫
t0

(P (τ)) dτ

tend∫
t0

(P+(τ)) dτ

(3.75)
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3 – Control of KiteGen

Where t0 and tend are the starting and ending time instants for a single cycle and P (t) is
the net generated power (computed using (3.24)). P+(t) is the gross generated power, i.e.
the power extracted from the wind without considering the power spent e.g. in the passive
phases. Thus, ηcycle is a measure of the losses inherent in each operational cycle. In the
KG–carousel configuration with variable line length, partial efficiencies have been also
computed for the KSU and the vehicle contributions, by applying equation (3.75) to their
respective power courses. On the basis of the reported data, it can be noted that quite high
overall efficiencies are obtained by all the considered configurations and operational cy-
cles, with the KG–carousel with variable line length reaching practically 100% efficiency.
However, in this configuration such a good overall performance is achieved at the cost of
quite bad partial performance of the KSU and vehicle energy balances (-23% and 63%
respectively). On the other hand, the KG–yoyo with wind glide recovery phase and the
KG–carousel with constant line length achieve high efficiencies, with only 2–3% losses
due to their respective passive phases.
As regards the values of the maximal power reported in Table 3.8, they have been com-
puted considering the absolute value of the generated power:

max
t
|P (t)|

This indicator has been evaluated also for the partial contributions of the KSU and of the
vehicle in the case of KG–carousel with variable line length. Note that, in general, the
maximal power is a “measure” of the resistance (i.e. the size) of all the mechanical and
electrical components of the machine (i.e. the kite, the cables, the transmission gears,
the mechanical structure, the electric generators etc.). Thus, the maximum power can be
assumed to be proportional to the cost of the considered generator. In particular it can be
noted that all the generators show similar maximal overall power values (about 5.0 MW):
this aspect is confirmed by the theoretical analyses and optimization results performed in
Chapter 4. Note that the gap between the overall maximal and average generated power
does not indicate that the energy generation performance are poor, since the obtained max-
imal power depends on the wind variability and not on the generator itself (see Chapter
6.2). However, in the KG–carousel with variable line length, the maximum power val-
ues related to line unrolling and vehicle movement are 10 MW and 14 MW respectively,
while the overall maximal power is 5.0 MW only. Thus, the mechanical and electrical
equipments of this configuration must be much more robust (i.e. expensive) than the
other solutions. Since the increase of total efficiency achieved by the KG–configuration
with variable line length is of few percent points (see Table 3.8), the related additional
costs are not motivated by the obtained improvements, thus making this configuration not
viable for further developments.
As a final remark, the performed simulations indicate that the KG–yoyo with low power
recovery and that the KG–carousel with variable line length could be probably less effec-
tive in harnessing high–altitude wind energy. On the other hand, the KG–yoyo with wing
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glide passive phase and the KG–carousel with constant line length are more promising.
Indeed, further investigations are needed to assess which KiteGen configuration achieves
the best overall performance, also considering the generated energy per km2 achievable
by using more KG–yoyo units in the same location (in a so–called KG–farm, see Section
4.4) and the use of more airfoils together on the same KG–carousel. Moreover, the oper-
ation of the generators presented so far involve several parameters, like the line unrolling
speed in a KG–yoyo or the vehicle angular speed in a KG–carousel, that have to be chosen
in a suitable way to obtain the maximal generated power. In Section 4.2, the KG–yoyo
configuration with wing glide maneuver, which shows the most promising performance
according to the presented simulation results, is further investigated and its operational
cycle is designed using numerical optimization techniques, also considering its use in a
large KG–farm.
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Chapter 4

Optimization of KiteGen

The operation of the described high–altitude wind energy generators involve several pa-
rameters, like the length and diameter of the lines, their rolling/unrolling speed, the an-
gular speed of the vehicles in a KG–carousel, etc.. Such parameters have been tuned
through physical insight and trial–and–error procedures in the simulation tests of Sec-
tion 3.4. However, a more systematic procedure is needed to design the operation of
the presented generators, in order to achieve the maximal output power for given wind
characteristics (i.e. for a given location). Moreover, when more complex systems are
considered, like large high–altitude wind farms composed of several KiteGen generators
working in the same area, suitable design tools have to be employed to maximize the
generated power density per unit area while taking into account the possible interactions
between the airfoils.
In this Chapter, numerical optimization techniques are applied to KiteGen generators, in
order to optimally choose their design and operational parameters. At first, simplified
crosswind power equations are recalled. Such relations, already derived in the literature
(see e.g. [8, 49, 50]), allow to compute the power obtained by an airfoil flying fast in
crosswind conditions. Then, such power equations are employed to compare the poten-
tials of the KG–yoyo and the KG–carousel configurations. Moreover, an optimal design
of the operational cycle of a KG–yoyo generator, for a location with a given nominal wind
profile, is carried out and the related numerical simulations are performed, in order to as-
sess the control performance and the matching between the simplified power equations
and the dynamical model described in Section 3.1. Then, numerical simulations and sim-
plified equations are employed to assess the scalability of KiteGen technology. Finally,
numerical optimization is also employed to optimally design a kite wind farm, denoted as
“KG–farm”, composed of more KG–yoyo units in the same location.
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4 – Optimization of KiteGen

4.1 Crosswind kite power equations
Consider an airfoil linked by a cable to a fixed point at ground level (i.e. the KSU).
Indicate with r the cable length and with ~er a unit vector parallel to the cable and pointing
towards increasing r values (see Figure 4.1). Moreover, indicate with ~We the effective
wind speed, i.e. the vector sum of absolute wind speed and of the airfoil speed with
respect to the ground, and with ~We,p the projection of ~We on the plane perpendicular to
vector ~er. The magnitudes of the airfoil lift and drag forces, |~FL| and |~FD| respectively,

Figure 4.1. Sketch of an airfoil flying in crosswind conditions.

can be computed as:

|~FL| = 1

2
ρACL| ~We|2

|~FD| = 1

2
ρACD| ~We|2

(4.1)

where ρ is the air density, CL and CD are the lift and drag aerodynamic coefficients and
A is the airfoil projected area. Assume that:

• the the airfoil flies in crosswind conditions;

• the inertial and apparent forces are negligible with respect to the aerodynamic
forces;

• the kite speed relative to the ground is constant;
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4.1 – Crosswind kite power equations

• the kite aerodynamic lift force ~FL approximately lies on the plane defined by vectors
~We,p and ~er;

The drag force ~FD is aligned with the effective wind speed vector ~We, while the lift force
~FL is perpendicular to ~FD and, under the considered assumptions, it lies on the plane
( ~We,p,~er). Note that also vectors ~er and ~We,p are perpendicular, since by definition ~We,p

is the projection of ~We on the plane perpendicular to ~er. Thus, the angle ∆α between
~FD and ~We,p is the same as the angle between vectors ~FL and ~er (see Figure 4.1). Since
inertial and apparent forces are negligible, the following equilibrium condition on the
plane perpendicular to vector ~er has to be satisfied:

|~FL| sin (∆α) = |~FD| cos (∆α) (4.2)

thus it can be noted that:
|~FD|
|~FL|

=
sin (∆α)

cos (∆α)
(4.3)

and that, from (4.1),
sin (∆α)

cos (∆α)
=

CD

CL

=
1

E
(4.4)

Considering the trigonometrical relationship cos (∆α)2 + sin (∆α)2 = 1, equation (4.4)
leads to:

cos (∆α)2 = 1− sin (∆α)2 = 1− cos (∆α)2

E2

cos (∆α)2

(
1 +

1

E2

)
= 1

cos (∆α) =

√
E2

(E2 + 1)

sin (∆α) =

√
1

(E2 + 1)

(4.5)

Now, the traction force F c,trc~er, F
c,trc ≥ 0 acting on the cable, by which mechanical power

can be generated, is the sum of the projections of vectors ~FL and ~FD on the cable direction
~er:

F c,trc~er = ~FL · ~er + ~FD · ~er (4.6)

whose magnitude in the considered framework can be computed as (see Figure 4.1):

F c,trc = |~FL| cos (∆α) + |~FD| sin (∆α) (4.7)
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Remark 1 Note that equation (4.4) can be obtained also by computing the maximal
value of F c,trc as a function of ∆α. This can be obtained by imposing the gradient
dF c,trc/d∆α = 0:

dF c,trc

d∆α
= −|~FL| sin (∆α) + |~FD| cos (∆α) = 0 (4.8)

this way, condition (4.4) is obtained once again:

|~FD|
|~FL|

=
sin (∆α)

cos (∆α)

Thus, considering equations (4.5) and (4.7), the following equation for the traction force
is obtained:

F c,trc =
1

2
ρACL

√
E2

(E2 + 1)
| ~We|2 +

1

2
ρA

CL

E

√
1

(E2 + 1)
| ~We|2 (4.9)

with straightforward manipulations, equation (4.9) leads to the following:

F c,trc =
1

2
ρACL

√
E2 + 1

E2
| ~We|2 (4.10)

Moreover, consider the projection ~We,r = ~We ·~er of the effective wind speed on the cable
direction. It can be noted that, by construction (see Figure 4.1) and due to equation (4.5),
the following relationship holds :

| ~We| = | ~We,r|
sin (∆α)

= | ~We,r|
√

(E2 + 1)

1
(4.11)

By substituting equation (4.11) in equation (4.10), the following result is obtained:

F c,trc =
1

2
ρACL

√
E2 + 1

E2

(
E2 + 1

) | ~We,r|2

F c,trc =
1

2
ρACLE2

(
1 +

1

E2

) 3
2

| ~We,r|2 (4.12)

Equation (4.12) gives the traction force on the cable as a function of the effective wind
speed projected on the cable itself. In order to take into account also the cable drag force
(computed as in Section 3.1.4), consider that:

~FD,tot = ~FD + ~F c,aer =
1

2
ρACD| ~We|2

~We

| ~We|
+

1

8
ρCD,l Al | ~We|2

~We

| ~We|
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4.1 – Crosswind kite power equations

where ~FD,tot is the total drag force, ~F c,aer is the cable drag force, CD,l is the cable drag
coefficient and Al is the cable front area (see Section 3.1.4). Considering an airfoil with
two cables of diameter dl and length r each, the following relation is obtained:

~FD,tot =
1

2
ρACD

(
1 +

(2 r dl) CD,l

4 ACD

)

︸ ︷︷ ︸
CD,eq

(4.13)

Defining:

Eeq =
CL

CD,eq
(4.14)

The following equation is obtained for the traction force F c,trc (from equations (4.12) and
(4.14)):

F c,trc =
1

2
ρACLE2

eq

(
1 +

1

E2
eq

) 3
2

| ~We,r|2 = C| ~We,r|2 (4.15)

where

C =
1

2
ρACLE2

eq

(
1 +

1

E2
eq

) 3
2

(4.16)

Note that, as already pointed out in Remark 1, equation (4.15) gives the maximal traction
force that can be generated by an airfoil, in accordance with the results obtained in [8].
Equation (4.15) can be employed to study the optimal operating conditions of the airfoil
in order to achieve the maximal generated power. Indeed, the power extracted by the air-
foil depends on how the force F c,trc is converted into mechanical and electrical power. In
particular, in the following the KG–yoyo traction phase and the KG–carousel with vari-
able line length are considered and compared. In the presented analyses, it is considered
that the absolute wind speed ~W0 (introduced in Section 3.1) is independent on elevation
and it is parallel with respect to the ground. Moreover, it is considered that the diameter
of the two cables linking the airfoil to the KSU is fixed and that it is sufficiently high to
make the cables able to support the generated traction forces.

4.1.1 KG–yoyo power equations
In the KG–yoyo configuration, power is generated by the line unrolling:

PKG–yoyo = F c,trcṙ = C| ~We,r|2ṙ
For a given position of the kite, identified by angles θ and φ and by the line length r (see
Section 3.1), the magnitude | ~We,r| of the effective wind speed along the unit vector ~er (i.e.
the direction of the lines) can be computed as:

| ~We,r| =
∣∣∣| ~W0| sin (θ) cos (φ)− ṙ

∣∣∣
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Where ~W0 is the nominal wind speed. Thus, the generated power on the basis of (4.15)
is:

PKG–yoyo(θ,φ,ṙ) = C| ~We,r|2ṙ = C
(
| ~W0| sin (θ) cos (φ)− ṙ

)2

ṙ (4.17)

If the nominal wind speed is constant with respect to the elevation and it is parallel with
respect to the ground, it can be noted that the maximal value of PKG–yoyo is obtained when
θ = θ∗ = π/2, φ = φ∗ = 0 and ṙ = ṙ∗ computed as:

ṙ∗ = arg max
ṙ

PKG–yoyo(θ
∗,φ∗,ṙ)

s. t.
ṙ ≤ | ~W0|

The constraint ṙ ≤ | ~W0| is included since, by physical intuition, the unrolling speed
cannot exceed the absolute wind speed. By imposing:

dPKG–yoyo

dṙ
= 3ṙ2 − 4| ~W0|ṙ + | ~W0|2 = 0

The following value is obtained:

ṙ∗ =
| ~W0|

3

and, consequently, the maximal power is

P ∗
KG–yoyo = C

(
| ~W0| − ṙ∗

)2

ṙ∗ = C
4

27
| ~W0|3 (4.18)

as already obtained e.g. in [8]. Indeed, the maximal power value P ∗
KG–yoyo (4.18) is a

purely theoretical upper bound, since for example it does not take into account and change
of wind speed with respect to elevation from the ground and it also does not consider the
need to perform a passive phase to recover the airfoil when the line length has reached its
maximum value. Such aspects are taken into account in Section 4.2, where more realistic
settings are considered. Moreover, note that the fixed optimal airfoil position obtained on
the basis of equation (4.15) cannot be achieved in practice, since the kite is moving in
the air: for this reason, the optimal airfoil orbits are loops or “figure eight” trajectories,
performed in the air in a zone that corresponds to the computed value of θ∗ and φ∗.

4.1.2 KG–carousel power equation and theoretical equivalence with
the KG–yoyo

In the KG–carousel with variable line length, power is generated in general by both the
line unrolling and the vehicle movement (see Section 3.1.6). If the vehicle longitudinal
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acceleration is negligible (see equation (3.22) in Section 3.1.5), the following equation is
obtained:

PKG–carousel = F c,trcṙ + Θ̇ R F gen(t) = F c,trc
(
ṙ + R Θ̇ sin θ sin φ

)

PKG–carousel = C| ~We,r|2
(
ṙ + R Θ̇ sin θ sin φ

)

Indeed, in the KG–carousel the magnitude of the effective wind speed | ~We,r| projected on
the cable direction is a function of the vehicle position Θ, of the kite position (θ, φ) in
the local coordinate system (see Figure 4.2 and Section 3.1), and of the vehicle tangential
speed R Θ̇:

| ~We,r| =
∣∣∣sin (θ)

(
| ~W0| cos (Θ + φ)−R Θ̇ sin (φ)

)
− ṙ

∣∣∣ (4.19)

Thus, the overall power generated by a KG–carousel (neglecting the mechanical and

Figure 4.2. Sketch of KG–carousel (top view).

electrical efficiencies) can be computed as:

PKG–carousel = C
(
sin (θ)

(
| ~W0| cos (Θ + φ)−R Θ̇ sin (φ)

)
− ṙ

)2 (
ṙ + R Θ̇ sin θ sin φ

)

(4.20)
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For given values of angular position Θ and tangential speed R Θ̇, it is possible to compute
the maximal overall power as follows:

P ∗
KG–carousel(Θ,Θ̇) = max

θ,φ,ṙ
PKG–carousel

s. t.

ṙ ≤ sin (θ)
(
| ~W0| cos (Θ + φ)−R Θ̇ sin (φ)

) (4.21)

The constraint on ṙ has been included in order to find optimal conditions that are practi-
cally achievable. The optimizer (θ∗,φ∗,ṙ∗)T can be analytically computed as:




θ∗

φ∗

ṙ∗


 =




π
2

−Θ
| ~W0|

3
+ R Θ̇ sin (Θ)


 (4.22)

By replacing the optimal values (4.22) in equation (4.20) the following maximal power
value is obtained:

P ∗
KG–carousel =

4

27
C| ~W0|3 (4.23)

Thus, according to result (4.23), in any KG–carousel operating condition (in terms of Θ
and Θ̇) the theoretical upper bound of the generated power can be achieved by suitably
choosing φ and ṙ. Note that the optimal value of φ indicates that the airfoil must be al-
ways parallel to the absolute wind vector (see Figure 4.2), while the line unrolling/rolling
speed ṙ has to be equal to one third of the absolute wind speed magnitude plus the term
(R Θ̇ sin (Θ)), which balances the contribution of the vehicle motion to the effective wind
speed. The analysis presented so far for the KG–carousel can be employed also in a more
general framework, e.g. to investigate the potential of generating energy while onboard
of a ship (as done in [44]). Now, a theoretically optimal KG–carousel operating cycle
can be designed by choosing a suitable course of the vehicle angular speed Θ̇, such that
a periodic course of all the involved variables is achieved. In particular, it is needed that
the average value of ṙ over a complete cycle equals zero:

1

2π

2π∫

0

(ṙ(Θ)) dΘ = 0 (4.24)

By considering a periodical course of R Θ̇ of the form:

R Θ̇ = R Θ̇(1− sin (Θ)) (4.25)
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and imposing the optimal value ṙ∗ (4.22) of ṙ, the following result is obtained for Θ̇:

ṙ = | ~W0|
3

+ R Θ̇(1− sin (Θ)) sin (Θ)

1
2π

2π∫
0

(ṙ(Θ)) dΘ = 1
2π

2π∫
0

(
| ~W0|

3
+ R Θ̇(1− sin (Θ)) sin (Θ)

)
dΘ =

= | ~W0|
3

+ 1
2π

2π∫
0

(
R Θ̇ sin (Θ)

)
dΘ− 1

2π

2π∫
0

(
R Θ̇ sin (Θ)2

)
dΘ =

= | ~W0|
3
−R Θ̇ 1

2π

2π∫
0

(
sin (Θ)2) dΘ = | ~W0|

3
− 1

2
R Θ̇

⇒ R Θ̇ =
2

3
| ~W0| (4.26)

From (4.25) and (4.26) the following course for the angular speed Θ̇ is obtained:

R Θ̇ =
2

3
| ~W0|(1− sin (Θ)) (4.27)

The optimal courses of Θ̇, ṙ and of the power Pvehicle, Pline generated by the vehicle motion
and by the line unrolling respectively, as well as the overall optimal power P ∗

KG–carousel, are
reported in Figure 4.3(a)–(b) as functions of the vehicle angular position Θ. The consid-
ered KG–carousel characteristics are reported in Table 4.1. The overall power is constant

Table 4.1. Model parameters employed to compute an optimal KG–carousel cycle
A 500 m2 Characteristic area
r 600 m Mean line length
R 300 m KG–carousel radius
CL 1.2 Airfoil lift coefficient
E 13 Aerodynamic efficiency
dl 0.02 m Diameter of a single line
CD,l 1 Line drag coefficient
ρ 1.2 kg/m3 Air density
| ~W0| 6 m/s Nominal wind speed magnitude

and equal to 4
27

C| ~W0|3 = 1.542 MW, i.e. the maximal power is continuously obtained.
However, as already noticed in the simulation Section 3.4.2, the rated power of the gen-
erators equipped on the vehicle has to be about 6.5 MW (i.e. four times the obtained net
power), while the KSU has to be able to provide about 5 MW to recover the airfoil when
a negative value of ṙ is issued (see Figure 4.3(a)–(b)). Such a drawback probably hinder
the possibility to effectively design a KG–carousel with variable line length, due to the
excessive costs for the electric equipments and the mechanical structure of the generator.

83



4 – Optimization of KiteGen
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Figure 4.3. (a) Line speed ṙ (dashed) and vehicle speed RΘ̇ (solid) during two com-
plete optimal KG–carousel cycles as functions of Θ. (b) Power Pvehicle generated by
the vehicle motion (dash–dot), power Pline given by the line unrolling (dashed) and
overall optimal power P ∗

KG–carousel (solid).

Moreover, as it can be noted in Figure 4.3(a), the optimal cycle is such that Θ̇ = 0 when
Θ = π/2, meaning that the vehicle should stop at such an angular position. This would
prevent the KG–carousel from completing the cycle, however such issue could be easily
solved by slightly modifying the optimal course of Θ̇ (at the expense of a little power loss
with respect to the theoretical upper bound).
To conclude this Section, it has to be remarked that KG–yoyo and KG–carousel have the
same power generation potentials, equal to Loyd’s theoretical bound [8]. However, such
potential cannot be completely exploited due to the need of performing a repeatable oper-
ational cycle. Thus, as already pointed out at the end of the Simulation section 3.4.3, both
these KiteGen configurations should be investigated in order to assess which one gives the
best tradeoff between average generated energy, land occupation, investment and main-
tenance costs. In the following, the attention is focused on the KG–yoyo configuration
with wing glide maneuver, since it proved to achieve the best overall performance in the
simulation results of Section 3.4.

4.2 Optimization of a KG–yoyo operating cycle
The upper bound (4.23) is a theoretical limit of the power that can be obtained by an airfoil
flying in crosswind conditions. As already highlighted in Sections 3.4 and 4.1.1, the need
of performing a feasible operating cycle, which can be continuously repeated, leads to
losses in the power generation performance. Moreover, other issues should be considered
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4.2 – Optimization of a KG–yoyo operating cycle

in the theoretical formulation, like the change of wind speed as a function of the elevation
from the ground, the cable dimensioning in accordance with the generated power values
and the maneuvering area required by the kite. In this Section, a KG–yoyo configura-
tion with wing glide recovery maneuver is considered and its operating parameters are
designed using numerical optimization methods, to take into account more realistic op-
erational conditions and physical constraints. The designed generator is then simulated
to assess the matching between the theoretical equations, which the optimization is based
on, and the dynamical model described in Chapter 3.
As described in Sections 2.3.1 and 3.3.1, the operation of a KG–yoyo is divided into two
phases, the traction and the passive ones. The operational parameters are the values θtrac

and θpass of angle θ during the traction and passive phase, the minimal cable length r dur-
ing the cycle (as it will showed later, the cable maximal length variation ∆r is fixed) and
the cable speed during the traction and the passive phase, ṙtrac and ṙpass respectively.
By indicating with Ptrac(t) and Ppass(t) the power generated (or spent) in the traction and
passive phases respectively, the average power P obtained in a cycle can be computed as:

P =

ttrac,end∫
t0

Ptrac(τ)dτ +
tpass,end∫
ttrac,end

Ppass(τ)dτ

tpass,end − t0
(4.28)

where t0 and ttrac,end are the starting and ending instants of the traction phase and tpass,end

is the ending instant of the passive phase (in this analysis, it is assumed that the starting
instant of the passive phase coincides with the ending instant of the traction one). Assume
that:

• approximately constant angles θtrac and θpass during the traction and passive phases
are kept, as well as constant φ angle;

• constant cable unrolling speed ṙtrac > 0 and winding back speed ṙpass < 0 are
employed during the traction and passive phases respectively;

• the amplitude ∆r of the variation of the cable length r during each cycle is imposed
and it is relatively small (e.g. 50 m) with respect to the minimal cable length r,
which occurs at the beginning of each traction phase.

The third assumption makes it possible to consider, with little approximation error, a
unique length value r for the cables during the whole operational cycle and consequently,
together with the assumptions on constant line speed and angles θ and φ, unique values
F c,trc

trac and F c,trc
pass of the cable forces generated in the traction and in the passive phases

respectively. Then, on the basis of the considered assumptions, a simplified formulation
for the average power P is obtained:

P =

(
F c,trc

trac ṙtrac(ttrac,end − t0)
)

+
(
F c,trc

pass ṙpass(tpass,end − ttrac,end)
)

tpass,end − t0
(4.29)
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Note that also equation (4.28) could be employed in the following analyses, e.g. using
numerical integration, however the increase of accuracy with respect to the simplified
equation (4.29) would be negligible. Indeed, as it will be showed later on, the relation
(4.29) gives a quite good estimate of the average power obtained in the numerical simu-
lations. Now, by imposing a periodicity condition on the cable length r and considering
the fixed cable length variation ∆r, the time intervals (ttrac,end− t0) and (tpass,end− ttrac,end)
can be expressed as functions of ṙtrac and ṙpass as follows (recalling that ṙpass < 0):

(ttrac,end − t0) =
∆r

ṙtrac

(tpass,end − ttrac,end) =
−∆r

ṙpass

(4.30)

On the basis of equations (4.29) and (4.30), through straightforward manipulations the
following equation is obtained:

P =
(
F c,trc

trac − F c,trc
pass

) ṙtrac ṙpass

ṙpass − ṙtrac
(4.31)

Equation (4.31) can be used to optimally design the KG–yoyo operating parameters. In-
deed, the values of the forces F c,trc

trac and F c,trc
pass depend on the parameters to be optimized,

according to the theoretical equations (4.15)–(4.16) which assume a constant wind speed
with respect to the elevation above the ground. If a wind profile is considered in equa-
tion (4.15) (e.g. the wind shear model introduced in Section 3.2), the optimal value of
θ is in general lower than π/2, since a lower θ value means higher elevation and, conse-
quently, stronger wind speed. Moreover, considering a variable wind speed, the generated
power depends also on the line length r. In fact, the latter contributes to change the airfoil
elevation Z:

Z = r cos (θ)

and, consequently, the nominal wind speed, according to the wind shear equation (3.26):

Wx(Z) = W0

ln

(
Z

Zr

)

ln

(
Z0

Zr

) = W0

ln

(
r cos (θ)

Zr

)

ln

(
Z0

Zr

)

where W0, Z0 and Zr are the wind shear model parameters. Moreover, the coefficient C
(4.16) also depends on r, due to its influence on line drag. Thus, in a more general case,
the traction force on the cable is computed as:

F c,trc(θ,φ,ṙ,r) = C(r) (Wx(r cos (θ)) sin (θ) cos (φ)− ṙ)2

Again, it can be noted that the value of φ that gives the maximal traction force is φ∗ = 0,
as it can be derived by intuition since φ = 0 means that the airfoil is flying perfectly
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downwind. Thus in the operation of the KG–yoyo the value of φ is ideally zero during
the traction phase. Note that in the passive phase a different value of φ would reduce
the traction force on the cable, leading to lower energy expense. This phenomenon is
exploited in the KG–yoyo operation with the low power recovery maneuver (see Sections
2.3.1 and 3.3.1). However, to change angle φ leads to a higher idle times between two
subsequent traction and passive phases, since time is needed to move the airfoil at the
requested position in terms of angle φ. Thus, in the KG–yoyo operation with wing glide
maneuver the value φ = 0 is chosen for the whole cycle, as it has been already done in
the simulation tests of Section 3.4.1. With the chosen value of φ, the cable forces during
the traction and passive phases can be computed as:

F c,trc
trac (θtrac,ṙtrac,r) = Ctrac(rtrac) (Wx(r cos (θtrac)) sin (θtrac)− ṙtrac)

2

F c,trc
pass (θpass,ṙpass,r) = Cpass(rpass) (Wx(r cos (θpass)) sin (θpass)− ṙpass)

2 (4.32)

where the values of Ctrac and Cpass are computed according to (4.16), considering that
different lift and drag coefficients have to be taken into account in the traction and in the
passive phases, due to the wing glide maneuver (as explained in Sections 2.3.1 and 3.3.1).
Therefore, the following optimization problem can be considered to design the operational
parameters of the KG–yoyo:

(
θ∗trac,ṙ

∗
trac,r

∗,θ∗pass,ṙ
∗
pass

)
= arg max P (θtrac,ṙtrac,r,θpass,ṙpass)

Furthermore, operational constraints have to be taken into account in the optimization,
in order to find out feasible operating conditions. In particular, the involved constraints
regard the maximal and minimal cable unrolling/rewinding speed, the minimal elevation
of the airfoil from the ground (considering also its maneuvering radius, see Section 2.1.1),
the minimal angle θ during the cycle and the cable breaking force. The constraints on the
line speed are the following:

ṙmin ≤ ṙ ≤ min(Wx(r cos (θ)) sin (θ),ṙmax)

where ṙmin, ṙmax are either imposed by the limitations of the electric drives employed
on the KSU or chosen in order to prevent excessive cable wear due to the high un-
rolling/rewinding speed. A minimal elevation Z can be imposed by requiring that (see
Figure 4.4):

r cos (θ + 5 ws

2(r+∆r)
) ≥ Z

where ws is the airfoil wingspan (see Section 2.1.1). Indeed, the term 5 ws

2(r+∆r)
takes into

account the variation of θ that may occur during the flight, due to the airfoil’s minimal
maneuvering radius. A constraint on the minimal value of θ is also introduced, in order to
keep the airfoil trajectory contained in a relatively small area and to obtain short idle time
intervals between the traction and recovery phases:

θ ≥ θ
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Figure 4.4. KG–yoyo operation: constraints on minimal elevation Z and on minimal angle θ.

with 0 ≤ θ ≤ π/2. Finally, the constraint related to the cable breaking load can be
expressed, for two cables with a given cable diameter dl, as:

F c,trc
trac ≤ 2csF (dl)

F c,trc
pass ≤ 2csF (dl)

where F (·) is the minimum breaking force of a single cable (see Figure 3.8 in Section
3.4) and cs is a safety coefficient.
Considering all the described constraints, the optimization problem to be solved is given
by:

(
θ∗trac,ṙ

∗
trac,r

∗,θ∗pass,ṙ
∗
pass

)
= arg max P (θtrac,ṙtrac,r,θpass,ṙpass)

s. t.
ṙmin ≤ ṙ ≤ min(Wx(r cos (θ)) sin (θ),ṙmax)

r cos (θ + 5 ws

2(r+∆r)
) ≥ Z

θ ≥ θ
F c,trc

trac ≤ 2csF (dl)
F c,trc

pass ≤ 2csF (dl)

(4.33)

Using the system data given in Table 4.2 and a wind shear profile with Z0 = 32.5 m,
W0 = 7.4 m/s and Zr = 6 10−4 m (reported in Figure 4.5 and corresponding to the data
collected at the site of Brindisi, Italy, during winter months, see Section 3.2), the solution
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of the optimization problem (4.33) is the following:



θ∗trac
ṙ∗trac
r∗

θ∗pass
ṙ∗pass




=




68.4◦

2.14 m/s
611 m
50◦

−6.0 m/s




(4.34)

The corresponding optimal average power value is equal to 2.10 MW. The optimal so-

Table 4.2. Optimization of a KG–yoyo operational cycle with wing glide ma-
neuver: system parameters
A 500 m2 Characteristic area
dl 0.04 m Diameter of a single line
F (dl) 1.50 106 N Minimum breaking load of a single line
CL 1.2 Average kite lift coefficient during the traction phase
E 13 Average kite efficiency during the traction phase
CL,WG 0.1 Kite lift coefficient during wing glide maneuver
CD,WG 0.5 Kite drag coefficient during wing glide maneuver
CD,l 1.2 Line drag coefficient
ρ 1.2 kg/m3 Air density
∆r 50 m Maximum line variation during a cycle
ṙmin -6.0 m/s Minimal line speed
ṙmax 6 m/s Maximal line speed
Z 30 m Minimal elevation from the ground
θ 50 Minimal angle θ
cs 2 Safety coefficient
ws 80 m Airfoil wingspan

lution (4.34) has been employed to perform a numerical simulation of the KG–yoyo, in
order to assess the control system performance and the matching between the theoretical
equations and the dynamical model of the system. The model and control parameters
employed in the simulation are showed in Table 4.3. The kite aerodynamical coefficients
reported in Figure 3.7 have been employed in the traction phase. In order to better evalu-
ate the matching between the theoretical equations and the numerical simulation, the latter
has been performed with no wind disturbances. The results related to five complete cycles
are reported. The obtained courses of the line length and kite trajectory are reported in
Figures 4.6(a) and 4.6(b) respectively. The line length is kept between 610 and 660 m, as
expected from the numerical optimization. As regards the kite trajectory, it can be noted
that during the traction phase the kite follows “figure eight” orbits and that its elevation
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Figure 4.5. Wind shear model, related to the site of Brindisi (Italy) during winter months,
employed in the simulation of the optimized KG–yoyo with wing glide recovery maneuver.

Z goes from about 214 m to 389 m, corresponding to a mean value of θ(t) equal to 68◦

(according to the optimized value), while the lateral angle φ(t) oscillates between ±10◦

with zero in average. The power generated in the simulation is reported in Figure 4.7(a):
the mean value is 1.96 MW, thus showing an error of only about 6% with respect to the
optimal value, due to the presence of the inertial and apparent forces, the cable weight and
the idle time between the traction and passive phases. In fact, such aspects are not taken
into account in the theoretical equations. Figure 4.8 shows the comparison between the
course of generated power obtained in the simulation, and the corresponding result of the
theoretical equation (4.17), computed taking into account the nominal wind speed given
by the employed wind shear model. It can be noted that a quite good matching exist, both
in the traction and in the passive phases. The course of the traction force F c,trc acting on
a single cable is showed in Figure 4.7(b): it can be noted that the obtained maximal value
of is about half the breaking load of 1.50 106, according to the safety coefficient cs = 2
employed in the optimization procedure. In fact, at the optimal solution (4.34) of problem
(4.33), the constraint on the cable break load results to be active, thus indicating again the
good matching between theoretical equations and numerical simulations. Finally, the
courses of the kite efficiency and of the lift and drag coefficients are reported in Figure
4.9(a)–(b). The aerodynamic efficiency is between 12 and 13.1 in the traction phases,
with a mean value of 12.5.
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Table 4.3. Numerical simulation of a KG–yoyo with optimized operational cycle:
system and control parameters.

m 300 kg Kite mass
A 500 m2 Characteristic area
dl 0.04 m Diameter of a single line
ρl 970 kg/m3 Line density
CL,WG 0.1 Kite lift coefficient during wing glide maneuver
CD,WG 0.5 Kite drag coefficient during wing glide maneuver
CD,l 1.2 Line drag coefficient
α0 3.5◦ Base angle of attack
ρ 1.2 kg/m3 Air density
∆r 50 m Maximum line variation during a cycle
θI 55◦ Traction phase starting conditions
φI 45◦

r 610 m
r 660 m Passive phase starting condition
θIII 50◦ Wing glide starting condition
θ 70◦ State constraint
ψ 6◦ Input constraints
ψ̇ 20◦/s
ṙ 3.69 m/s Traction phase reference ṙref

ṙ -6.0 m/s Passive phase reference ṙref

Tc 0.2 s Sample time
Nc 1 steps Control horizon
Np 10 steps Prediction horizon

4.3 KiteGen scalability
In this Section, the scalability of KiteGen is studied using both numerical optimization
and simulation tools, in order to understand the effects, on the power generation perfor-
mance, of different values of kite area and efficiency, cable length and wind speed. In the
performed analyses, if not differently specified, a kite area of 500 m2 has been considered,
as well as the aerodynamic characteristics reported in Figure 3.7 (and, in the numerical
optimization, average values of efficiency E and lift coefficient CL of 13 and 1.2 respec-
tively). For each considered combination of the involved parameters, the cable diameter
has been dimensioned in accordance with the traction force exerted by the kite, which
varies with the different considered parameter values. To this end, the breaking load char-
acteristic reported in Figure 3.8 has been employed, considering a safety coefficient of
1.2 . The optimization procedure described in Section 4.2 has been used to compute the
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Figure 4.6. Optimized operation of a KG–yoyo with wing glide maneuver. (a) Line
length r(t) and (b) kite trajectory during five complete cycles.
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Figure 4.7. Optimized operation of a KG–yoyo with wing glide maneuver. (a) Mean
(dashed) and actual (solid) generated power and (b) traction force on each cable F c,trc

(solid) and maximal breaking load (dashed) during five complete cycles.

optimal average generated power with a fine grid of values of the considered parameters,
while numerical simulations have been employed with a larger grid of values, to verify
the good matching with the optimization results.

I) Kite area. The obtained average power as a function of the kite area is showed in
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Figure 4.8. Optimized operation of a KG–yoyo with wing glide maneuver. Compari-
son between the power values obtained in the numerical simulation (solid) and using the
theoretical equations (dashed).
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Figure 4.9. Optimized operation of a KG–yoyo with wing glide maneuver. Kite (a)
aerodynamic efficiency and (b) lift and drag coefficients during five complete cycles.

Figure 4.10(a): a linear dependence can be observed, as expected from the aero-
dynamic laws. In these analyses, a fixed wind speed of 9 m/s has been imposed
regardless of kite flight altitude.

II) Aerodynamic efficiency. The analyses have been realized by scaling the aerody-
namic drag coefficient of the kite, so that different values of aerodynamic efficiency
were obtained. A constant wind speed of 9 m/s has been considered regardless of
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Figure 4.10. Generated net power as a function of (a) kite area, (b) aerodynamic effi-
ciency, (c) cable length for winter (solid) and summer (dashed) periods at The Bilt, in
the Netherlands, and (d) wind speed. Solid line: numerical optimization result. Circles:
numerical simulation results.

kite flight altitude. Note that the traction force exerted by the kite on the cables
grows with the square of kite aerodynamic efficiency. Thus if a fixed value of cable
diameter were considered, the mean net power would increase with the square of
kite aerodynamic efficiency. Figure 4.10(b) shows the generated power as a func-
tion of the kite aerodynamic efficiency, considering a cable diameter dimensioned
to resist to the traction forces.

III) Cable length. The cable length can positively influence the generated power if the
wind speed increases with the elevation with respect to the ground, depending on
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the rate of such increase. In Figure 4.10(c) the dependence of the mean net power
on the cable length is reported for the wind shear models of Figure 3.6, related to the
winter and summer months at De Bilt site, in the Netherlands. It can be observed
that in both cases there is an optimal point (corresponding to about 1200 m and
1300 m for winter and summer wind, respectively) in which the positive effect of
higher wind speed values, obtained with longer cables, is counter–balanced by the
negative effect of higher cable weight and drag force. Beyond this point, an increase
of cable length leads to lower mean generated power.

IV) Wind speed. The dependance of the mean generated power on wind speed is shown
in Figure 4.10(d). It can be noted that, as expected, a cubic relationship exists
between these two variables. In particular, note that the same 500–m2 kite can
be used to obtain either a KG–yoyo with 2–MW rated power, with 9–m/s wind
speed, or a KG–yoyo with 10–MW rated power, with 15–m/s wind speed, without
a significant cost increase, except for the electric equipments. Figure 4.11(a) shows
the power curves obtained with two KGyoyo units with 2–MW and 5–MW rated
power. It can be noted that a quite high cut–out speed is achieved: this is due
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Figure 4.11. (a) Power curves of a 2–MW (solid) and of a 5–MW (dashed) rated power
KG–yoyo. (b) Comparison between the power curves obtained by a 2–MW, 90–m diameter
wind turbine (dashed) and a 2-MW, 500 m2 KG–yoyo (solid).

to the possibility of KiteGen to make the traction forces decrease, in presence of
very strong winds, by increasing the line unrolling speed and/or raising the airfoil
to lower θ angles. Figure 4.11(b) shows a comparison between the power curves
of a 2–MW, 500-m2 area KG–yoyo and a 2–MW, 90–m diameter wind turbine
[48]. Note that the rated power is reached with 9 m/s wind speed by the KG–yoyo,
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while about 13 m/s are needed by the wind turbine. Moreover, the turbine cut–
out speed is about 25 m/s, while about 40 m/s are obtained for the KG–yoyo. Such
considerations are useful to perform a preliminary estimate of the energy production
potential of a KiteGen generator and of the related energy cost (see Chapter 6).

4.4 Optimization of a high–altitude wind farm

In this Section, the problem of suitably allocating and designing the operational cycles
of several KG–yoyo generators on a given territory is considered, in order to maximize
the average generated power per unit area while avoiding collision and aerodynamic in-
terferences among the various kites. Indeed, in the present wind farms, in order to limit
the aerodynamic interferences between wind turbines of a given diameter D, a distance
of 7D in the prevalent wind direction and of 4D in the orthogonal one are typically used
(see Section 1.2.1 and [25, 51]).
In a KG–farm, collision and aerodynamic interference avoidance are obtained if the space
regions, in which the different kites fly, are kept separated. At the same time, to max-
imize the generated power density per km2 of the KG–farm, it is important to keep the
distance between the KSUs as short as possible. As already highlighted in the simulations
of Section 3.4.1, the kite trajectory in a KG–yoyo generator with wing glide recovery ma-
neuver is kept inside a space region which is limited by a polyhedron of given dimension
a× a×∆r (see Fig. 4.12). The value of a approximately depends on the kite wingspan,
which influences its minimal turning radius during the flight, while ∆r is a design pa-
rameter which imposes the maximal range of cable length variation during the KG–yoyo
cycle. A group of 4 KG–yoyo units, placed at the vertices of a square with sides of length
L, is now considered (see Fig. 4.13). The minimum cable length of the upwind kites is
indicated with r1, while r2 is the minimum cable length of the downwind kites and ∆r
is the cable length variation of all the kites during the flight. Finally, θ1 and θ2 are the
average inclinations of the upwind and downwind kites respectively, with respect to the
vertical axis Z (see Fig. 4.13). For given characteristic of wind, kite, cables, etc., the
values of L, r1, r2, θ1 and θ2 can be computed to maximize the average net power per km2

generated by the four KG–yoyo generators, subject to the constraints that the polyhedra
limiting the kite flight regions do not intersect and that the maximum flight elevation of
the downwind kites is lower than the minimum elevation of the upwind ones, so to avoid
aerodynamic interferences. Moreover, the other operational parameters of each of the
KG–yoyo units, i.e. the line rolling and unrolling speed values in the traction and passive
phases, can be optimized as well. In particular, denote with P 1 and P 2 the average power
obtained by the upwind and by the downwind generators respectively. As showed in Sec-
tion 4.2, P 1 and P 2 are functions of θ1, ṙtrac,1, r1, ṙpass,1 and of θ2, ṙtrac,2, r2, ṙpass,2, where
ṙtrac,1, ṙpass,1 are the line unrolling and winding back speed values of the upwind KG–yoyo
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Figure 4.12. KG–yoyo cycle with wing glide maneuver: traction (solid) and pas-
sive (dashed) phases. The kite is kept inside a polyhedral space region whose
dimensions are (a× a×∆r) meters.

and ṙtrac,2, ṙpass,2 are the line speed values of the downwind KG–yoyo. Note that, differ-
ently from the optimization of a single KG–yoyo performed in Section 4.2, a unique θ
value is now considered for both the traction and the passive phases of the KG–yoyo.
However, the analysis can be easily generalized to include different θ values for the two
operational phases.
In a single group of 4 KG–yoyo units, considering as occupied land only the area in
between the generators, the power density PD per unit area can be computed as follows:

PD =
2(P 1 + P 2)

L2
(4.35)

If more basic groups are arranged together in a large square area, in such a way that
along the wind direction any two subsequent KG–yoyo units gives different average power
values and in the direction perpendicular to the wind any two subsequent KG–yoyo units
give the same average power (i.e. P 1 or P 2, see Figure 4.14), the obtained power density
is:

PD =
N2(P 1 + P 2)

2(N − 1)2L2
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Figure 4.13. Group of 4 KG–yoyo placed on the vertices of a square land area.
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Figure 4.14. KG–farm composed of basic groups of 4 KG–yoyo units.

where N is the number of units on the side of the square. By letting N → ∞, the
following relation is obtained:

PD = lim
N→∞

N2(P 1 + P 2)

2(N − 1)2L2
=

(P 1 + P 2)

2

1

L2
(4.36)
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Thus, the average power density of the considered wind farm is given by the mean power
of two subsequent units (along the wind direction) divided by the square of their distance.
The value of PD (4.36) clearly depends on the involved operational and design parame-
ters θ1, ṙtrac,1, r1, ṙpass,1, θ2, ṙtrac,2, r2, ṙpass,2, L. Thus, the following numerical optimization
problem can be set up and solved to design the KG–farm configuration and operation:

(
θ∗1, ṙ

∗
trac,1, r

∗
1, ṙ

∗
pass,1, θ

∗
2, ṙ

∗
trac,2, r

∗
2, ṙ

∗
pass,2, L

∗) = arg max PD

s. t.
ṙmin ≤ ṙ1 ≤ min(Wx(r1 cos (θ1)) sin (θ1),ṙmax)

r1 cos (θ1 + ∆θ1) ≥ Z
F c,trc

trac,1 ≤ 2csF (dl)
F c,trc

pass,1 ≤ 2csF (dl)

ṙmin ≤ ṙ ≤ min(Wx(r2 cos (θ2)) sin (θ2),ṙmax)
r2 cos (θ2 + ∆θ2) ≥ Z

F c,trc
trac,2 ≤ 2csF (dl)

F c,trc
pass,2 ≤ 2csF (dl)

(r2 + ∆r) cos(θ2 −∆θ2)− r1 cos(θ1 + ∆θ1) ≤ 0
r1 sin(∆θ1)− L

2
≤ 0

r2 sin(∆θ2)− L
2
≤ 0

((r2 + ∆r) sin(θ2 + ∆θ2)− L)/ tan(θ1 −∆θ1)− (r2 + ∆r) cos(θ2 + ∆θ2) ≤ 0
(r2 + ∆r) cos(θ2 −∆θ2)− (L + (r2 + ∆r) sin(θ2 −∆θ2))/ tan(θ1 + ∆θ1) ≤ 0

∆θ1 − θ1 ≤ 0
∆θ2 − θ2 ≤ 0

(4.37)
where ∆θ1 = 5 ws

2(r1+∆r)
and ∆θ2 = 5 ws

2(r2+∆r)
. The constraints included in (4.37) prevent

interference between the airfoil flying zones, both in the parallel and perpendicular direc-
tions with respect to the wind. Using the system data given in Table 4.4 and a wind shear
profile with Z0 = 32.5 m, W0 = 7.4 m/s and Zr = 6 10−4 m (reported in Figure 4.5 and
corresponding to the data collected at the site of Brindisi, Italy, during winter months, see
Section 3.2), the solution of the optimization problem (4.37) is the following:




θ∗1
ṙ∗trac,1
r∗1

ṙ∗pass,1
θ∗2

ṙ∗trac,2
r∗2

ṙ∗pass,2
L




=




46.5◦

2.3 m/s
1100 m
−6.0 m/s

51.7◦

2.2 m/s
232 m
−6.0 m/s
250 m




(4.38)
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Table 4.4. Optimization of a KG-farm: system parameters
A 500 m2 Characteristic area
dl 0.04 m Diameter of a single line
F (dl) 1.50 106 N Minimum breaking load of a single line
CL 1.2 Average kite lift coefficient during the traction phase
E 13 Average kite efficiency during the traction phase
CL,WG 0.1 Kite lift coefficient during wing glide maneuver
CD,WG 0.5 Kite drag coefficient during wing glide maneuver
CD,l 1.2 Line drag coefficient
ρ 1.2 kg/m3 Air density
∆r 50 m Maximum line variation during a cycle
ṙmin -6.0 m/s Minimal line speed
ṙmax 6 m/s Maximal line speed
Z 30 m Minimal elevation from the ground
θ 50 Minimal angle θ
cs 2 Safety coefficient
ws 50 m Airfoil wingspan

With the obtained value of L, the distance between each pair of airfoils flying at the
same elevation is about 500 m, thus limiting also aerodynamic interference. The obtained
power density is 20 MW/km2, with 16 KG–yoyo units per km2. If electrical generators
with 2–MW rated power are equipped on each KG–yoyo, a rated power of 32 MW/km2

is achieved by the KG–farm. Note that an actual wind farm composed of 90–m diameter,
2–MW turbines has a density of 4.4 turbines per km2 and a corresponding rated power
density of only about 9 MW. A more detailed comparison between a KG–farm and an ac-
tual wind farm is carried out in Chapter 6. Once the KG–farm configuration has been de-
signed in “nominal” conditions (i.e. according to the nominal wind profile of the selected
location), it is possible to derive its power curve using optimization and simulation tools.
In particular, numerical optimization can be employed to compute the operational param-
eters with different values of wind speed. As it will be showed in Chapter 6, the power
curve can then be used, together with the analysis of wind speed data related to the con-
sidered site, to estimate the capacity factor obtained by the KiteGen technology. In order
to compute the power curve of the designed KG–farm, the optimization problem (4.37) is
solved assuming that the values of r1, r2 and L are not modified with respect to the values
optimized in the nominal conditions. Thus, only the variables θ1, ṙtrac,1, ṙpass,1, θ2, ṙtrac,2

and ṙpass,2 have to be optimized again. Figure 4.15 shows the power curve obtained for the
KG–farm with nominal parameters (4.38), considering a rated power of 2 MW for each
KG–yoyo. It can be noted that, as it happens for a single KG–yoyo (Figure 4.11(a)), a
much higher cut–out wind speed is achieved with respect to that of a wind turbine (see
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Figure 4.15. Power curve of a KG–farm composed of 2–MW, 500–m2 KG–yoyo units.

Figure 4.11(b)). Indeed, in KiteGen the cut–out wind speed is related to the cable and/or
kite breaking due to the excessive traction forces. By suitably changing the unrolling
speed or the angle θ with respect to the vertical axis, it is possible to make the traction
force decrease while still generating power. However, a lower cut–out speed is achieved
in a KG–farm with respect to a single KG–yoyo (see Figures 4.11(a) and 4.15): this is due
to the fact that in the case of a wind farm such counteractions, particularly the increase of
θ angle, are limited by the constraints imposed by the nearby kite flying zones. Such an
aspect is highlighted in Figure 4.16, which shows the optimal operating conditions with
two different absolute wind speed values. Thus, the presented results show that a Kite-
Gen system can have a much larger operating range than an actual wind turbine and that
a KG–farm can achieve a much higher rated power density than a wind turbine farm.
In Chapter 6, the energy generation potential of KiteGen is investigated further and an
estimate of the cost of high–altitude wind energy is computed and compared with the cost
of the present wind energy and of fossil energy.
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Chapter 5

Experimental activities

At Politecnico di Torino a small scale KG–yoyo prototype has been built, in order to ex-
perimentally verify the validity of the KiteGen concept. The design of the prototype has
been carried out in part on the basis of simulation results obtained with the model and con-
trol technique described in Chapter 3. In this Chapter, such simulation results are briefly
recalled and the constructed prototype is described. Then, a comparison between the first
collected experimental data and the results of the numerical simulations is performed.

5.1 Simulation of a small scale KG–yoyo
The numerical simulations presented in this Section have been employed in the design
process of the KG–yoyo prototype. In particular, the simulated courses of the traction
forces acting on the cables and of their direction have been used to dimension the me-
chanical structure and the transmission organs of the KSU. The low power passive phase
has been considered. The model and control parameters are reported in Table 5.1. As
regards the wind speed, in these simulations the following model has been considered:

Wx(Z) =

{
0.02Z + 4 m/s if Z ≤ 100 m,
0.0086(Z − 100) + 6 m/s, if Z > 100 m.

(5.1)

The nominal wind speed is 4 m/s at 0 m of altitude and grows to 6 m/s at 100 m altitude
and to 7.7 m/s at 300 m altitude. Moreover, wind turbulence is introduced, with uniformly
distributed random components along the inertial axes (X,Y,Z). The absolute value of
each component of ~Wt ranges from 0 m/s to 3 m/s, which corresponds to 50% of the
nominal wind speed at 100 m altitude.
Figure 5.1(a) shows the trajectory of the kite during three complete cycles, while the
generated power is reported in Figure 5.1(b). The mean power is 5 kW. The magnitude
of the traction force acting on the cable is showed in Figure 5.1(c). A maximal value of
about 0.7 t for each cable is obtained. Finally, the course of cable length is kept between
400 m and 800 m (see Figure 5.1(d)).
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Table 5.1. Model and control parameters employed in the simulation a small
scale KG–yoyo generator

m 4 kg Kite mass
A 10 m2 Characteristic area
dl 0.003 m Diameter of a single line
ρl 970 kg/m3 Line density
CD,l 1.2 Line drag coefficient
α0 3.5◦ Base angle of attack
ρ 1.2 kg/m3 Air density
ṙ 2.2 m/s Traction phase reference for ṙ
ṙ -5.5 m/s passive phase reference for ṙ
θI 55◦ Traction phase starting conditions
φI 45◦

r 400 m
r 800 m 1st passive sub–phase starting conditions
φ

II
45◦ 2nd passive sub-phase starting conditions

θII 20◦

θ 75◦ State constraint
ψ 6◦ Input constraints
ψ̇ 20◦/s
Tc 0.2 s Sample time
Nc 1 steps Control horizon
Np 10 steps Prediction horizon

5.2 KiteGen prototype
This Section briefly describes the small scale KG–yoyo prototype built in the project Kite-
Gen at Politecnico di Torino, Italy. The prototype is fastened on a light truck, allowing to
perform tests at different locations.
The airfoils. The employed airfoils are commercial power kites with an inflatable struc-
ture, normally used for kite surfing (see Figure 5.2). Kite with projected area ranging
from 8 to 18 m2 are used with the prototype. Note that these airfoils, though light, are
not optimal for energy generation since they are usually designed to be less powerful, for
safety reasons.
The cables. The two cables equipped on the prototype are 1000–m long, made of com-
posite fibers (Dyneemar) with high traction resistance a density of about 0.970 kg/dm3

(see Figure 5.3). The minimum breaking load of the employed cables as a function of the
diameter is reported in Figure 3.8 of Section 3.4. The cables employed on the prototype
have a diameter of 4 mm and a breaking load of 1.3 t, i.e. about twice the traction force
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Figure 5.1. Simulation results of a small scale KG–yoyo unit. Obtained (a) kite
trajectory and courses of (b) generated power, (c) traction force acting on a single
cable and (d) line length.

values obtained in simulation. The cables are highly resistant to traction, however their
fiber shows high wear if the operational temperature raises above 60–65◦C.
Mechanical structure and electric drives. The mechanical and electrical components
of the prototype are showed in Figure 5.4. The cables are winded around two steel drums
of about 1–m length and 0.3–m diameter. A series of small winches allow to direct each
cable in such a way that its direction is perpendicular to the rotational axis of the re-
lated drum. Two small electric drives, of 1 kW–power each, are employed to translate
the position of the two cables with respect to their drums, while the cables are being
unrolled/rewinded, in order to properly distribute the winded line along all of the drum
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Figure 5.2. Power kites employed with the KiteGen prototype.

Figure 5.3. Cables equipped on the KiteGen prototype.

length. Two electric drives with 20–kW peak power and 10–kW rated power are em-
ployed on the prototype to generate energy. The energy produced is accumulated in a
stack of batteries which have a total voltage of about 340 V. A steel structure bears the
drives, the drums and the winches.

5.3 Comparison between numerical and experimental re-
sults

In this Section, experimental data obtained with the small-scale yo–yo prototype built at
Politecnico di Torino are showed and compared to simulation results, in order to assess

106



5.3 – Comparison between numerical and experimental results

Figure 5.4. Small scale KG–yoyo prototype.

the matching between simulated and real generated energy. Such evaluation is useful to
estimate the confidence level in the simulation results obtained in Sections 3.4 and 4.2.
In particular, the measured generated power, line length and line speed related to two dif-
ferent experimental sessions are reported (see Figure 5.5(a)–(f)). In both cases, the kite
was controlled by a human operator. The collected measured values of line speed have
been employed as reference speed to perform a simulation with the model described in
Section 3.1. The first data are related to experimental tests performed in Sardinia, Italy,
in September 2006, in presence of a quite good (although very disturbed) wind of about
4–5 m/s at ground level. The employed kite had an effective area of 5 m2 and the max-
imum line length was 300 m. Figure 5.5(a) and 5.5(b) show the comparison between
experimental and simulated line length r and line speed ṙ. The obtained courses of gen-
erated power are reported in Figure 5.5(c) and show that good correspondence between
simulated and experimental data is achieved. The same analysis has been performed on
the data collected in January, 2008, during experimental tests performed at the airport of
Casale Monferrato near Torino, Italy (see Figure 5.6). A movie of the experimental tests
performed near Torino is available on the web–site [52, 53]. The wind flow was quite
weak (1–2 m/s at ground level and about 3–4 m/s at 500 m of height). The employed kite
had an effective area of 10 m2 and line length of 800 m. The courses of experimental and
simulated line length and speed and power values are reported in Figure 5.5(d)–(f). Also
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Figure 5.5. Measured (dashed) and simulated (solid) (a) line length r, (b) line speed
ṙ and (c) generated power P regarding experimental tests carried out in Sardegna,
Italy, September 2006. Measured (dashed) and simulated (solid) (d) line length r, (e)
line speed ṙ and (f) generated power P regarding experimental tests carried out near
Torino, Italy, January 2008.

in this case, a good matching between real measured and simulated data can be observed.
Such correspondence allows to be quite confident about the power values obtained with
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Figure 5.6. A picture of the experimental tests performed at the airport of Casale Mon-
ferrato near Torino, Italy, in January, 2008.

the simulations of Sections 3.4 and 4.2.
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Chapter 6

Wind speed, capacity factor and energy
cost analyses

In Chapters 2–4 the KiteGen technology has been described and studied using theoretical
and numerical tools, based on well assessed physical and aerodynamical laws, in order
to evaluate its energy generation potential and its scalability. Then, in Chapter 5, a com-
parison has been carried out between numerical results and experimental data, collected
during the first tests performed with a small–scale prototype. The good matching between
numerical simulations and real world measures increases the confidence level in the re-
sults obtained so far.
As already pointed out in the brief overview of the actual wind energy technology given
in Section 1.2.1, the performance (and profit) of a wind energy generator depends on the
strength and variability of the wind at the considered site. Now, in this Chapter, an anal-
ysis of wind data collected in several locations in Italy and around the world is carried
out, in order to evaluate the average energy that can be extracted by a KiteGen genera-
tor. Then, on the basis of the obtained results, the cost of high–altitude wind energy is
estimated and compared with those of the actual wind and fossil energies.

6.1 Wind data analysis

In this Section, the measures of wind speed collected during eleven years (from 1996 to
2006) in several locations around the world are analyzed. In particular, the measurements
have been performed daily using radiosondes at elevations ranging from 20 m to more
than 4000 m above the ground. The collected data related to many locations all over the
world are archived in the database [27] of the Earth System Research Laboratory of the
National Oceanic & Atmospheric Administration.
The aim of the presented analysis is to evaluate the distribution of wind speed, for a given
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site, at different elevations above the ground. In particular, the ranges 50–150 m and 200–
800 m are of interests, since they correspond to the elevations at which wind turbines and
KiteGen generators operate respectively. The site of De Bilt, in The Netherlands, as well
as five sites in Italy are considered. Figure 6.1 shows, for four of the considered locations,
the histograms of wind speed at the considered altitudes. The computed distributions are
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Figure 6.1. Histograms of wind speed between 50 and 150 meters above the ground
(black) and between 200 and 800 meters above the ground (gray). Data collected at (a) De
Bilt (NL), (b) Linate (IT), (c) Brindisi (IT), (d) Cagliari (IT). Source of data: database of
the Earth System Research Laboratory, National Oceanic & Atmospheric Administration

fitted quite well by Weibull probability density distribution functions, as already known in
the literature (see e.g. [54]). It can be noted that in all the considered sites the wind speed
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values between 200 m and 800 m are significantly higher than those observed between 50–
150 m. Considering as an example the results obtained for De Bilt (Figure 6.1(a)), in the
elevation range 200–800 m the average wind speed is 10 m/s and wind speeds higher than
12 m/s (at which a 2–MW wind turbine approximately reaches its rated power, see [48])
can be found with a probability of 38%, while between 50 and 150 m above the ground
the average wind speed is 7.9 m/s and speed values higher than 12 m/s occur only in the
8% of all the measurements. Similar results have been obtained with the data collected in
the other considered sites. Moreover, the same analysis on the data related to Linate, Italy,
leads to even more interesting results (see Figure 6.1(b)): in this case, between 50 and 150
meters above the ground the average wind speed is 0.7 m/s and speeds higher than 12 m/s
practically never occur, thus making this location not profitable for the actual wind energy
technology. On the other hand, in the operating range of KiteGen an average speed of 6.9
m/s is obtained, with a probability of 7% to measure wind speed higher than 12 m/s.
Thus, the wind speed distribution of a site like Linate, between 200 and 800 m above the
ground, is comparable with that of a site like De Bilt at 50–150 m. Considering that the
latter is a good site for the actual wind energy technology, the reported results indicate
that locations like Linate may be profitable for high–altitude wind energy generation. This
consideration is highlighted in the next Section, where the performed wind data analysis
is linked to the energy generation potential of KiteGen.

6.2 Capacity factor of wind energy generators
As recalled in Section 1.2.1, due to wind intermittency the average power produced by a
wind generator over the year is only a fraction, often indicated as Capacity Factor (CF),
of its rated power. For a given wind generator on a specific site, the CF can be evalu-
ated on the basis of the probability density distribution function of wind speed and of the
power curve of the generator. In Figure 6.2 the power curve of a commercial 2–MW,
90–m diameter wind turbine and that of a 2–MW, 500–m2 area KG–yoyo (obtained in
Section 4.3) are reported. Both generators have the same rated power, however the wind
tower needs about 12–m/s wind speed to reach such a value, while the KG–yoyo gen-
erator achieves it already with 9–m/s wind speed, where the wind tower produces only
1 MW. Note that a 2–MW wind turbine with a power curve reaching the rated power at
9–m/s wind speed could be built, but it would require a rotor diameter of about 115 m,
with consequent higher and heavier tower structure, leading to significant cost increases.
Indeed, the actual wind turbines are probably close to their economical and technological
limits (see Section 1.2.1). Moreover note that, as already pointed out in Section 4.3, the
KiteGen generator has a higher cut–out wind speed and a lower cut–in speed, which allow
to capture wind energy in a larger range of operating conditions.
Using the power curves reported in Figure 6.2 and the wind speed distributions estimated
from the available wind speed measures (showed in part in Figure 6.1), the CF of the two
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Figure 6.2. Power curves of a 2–MW, 90–m diameter wind turbine (dashed) and of a
2-MW, 500 m2 KG–yoyo (solid).

considered generators can be evaluated. Table 6.1 shows the obtained results, related to
the site of De Bilt in The Netherlands as well as the Italian sites of Linate, Cagliari, Brin-
disi, Trapani and Pratica di Mare. More results are reported in the Appendix C. Note that

Table 6.1. Capacity factor of a 2–MW, 90–m diameter wind tower and a 2–MW, 500–m2

KG–yoyo for some sites in Italy and in The Netherlands, evaluated from daily wind
measurements of radiosondes.

2–MW Wind tower 2–MW KG–yoyo
De Bilt (NL) 0.36 0.71
Linate (IT) 0.006 0.33
Brindisi (IT) 0.31 0.60
Cagliari (IT) 0.31 0.56
Pratica di Mare (IT) 0.23 0.49
Trapani (IT) 0.30 0.56

in most of the considered sites, the CF of a 2–MW KG–yoyo is about two times greater
than that of a 2–MW wind turbine. This means that in these sites the yearly generated
energy given by the KG–yoyo is twice the energy extracted by the wind turbine, with
consequent economical advantages. Moreover, in sites like Linate, where the actual wind
energy technology has CF'0 (i.e. almost no generated energy), the KG–yoyo achieves a
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CF of about 0.3–0.35, i.e. similar to the one obtained by the wind turbine in the good site
of De Bilt.
If a KG–farm is considered, similar analyses can be made regarding the yearly generated
energy per unit area. On the basis of the power curve obtained using the optimization pro-
cedure presented in Section 4.4, considering the site of De Bilt, and reported in Figure 6.3,
related to a KG–farm composed of 2–MW KG–yoyo units, a value of CF=0.6 is achieved.
Note that the rated power of such a wind farm is 32 MW per km2. Thus, an average yearly
generated power of about 19 MW per km2 is obtained. An actual wind farm composed by
2–MW, 90–m diameter wind turbines has a rated power density of about 9 MW per km2

and, on the basis of the estimated CF reported in Table 6.1, an average yearly generated
power density of about 3.2 MW per km2. Thus, the energy per km2 generated by the
KG–farm would be about six times higher than that of an actual wind farm. Finally, it is
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Figure 6.3. Power curve of a KG–farm composed of 2–MW, 500–m2 KG–yoyo units.

interesting to also evaluate how the CF of KiteGen changes with its rated power. Indeed,
in general if a higher rated power is considered, the CF is expected to decrease, since
stronger (and less frequent) wind speed values are needed to generate higher power val-
ues. Figure 6.4(a) and (b) show the dependance of the CF on the rated power at the sites
of De Bilt and Linate, for a single 500–m2 area KG–yoyo and for a KG–farm composed
by several of such units. As expected, the CF decreases as the rated power increases. Note
that at De Bilt site, a KG–farm composed of 5–MW KG–yoyo units (i.e. with a nominal
rated power of 80 MW per km2), has CF'0.4 and, consequently, an average yearly gen-
erated power of about 32 MW per km2, i.e. about ten times higher than the one achieved
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by a 2–MW wind turbine farm. In Section 6.3, such results are employed to perform an
estimate of the cost of high–altitude wind energy produced with KiteGen.
The curves reported in Figures 6.4(a)–(b) can be employed, considering also the cost in-
crease due to the use of electric generators with higher rated power, to dimension a Kite-
Gen generator/farm according to the characteristics of the wind at the considered site, in
order to maximize the profit. Note that the cost of increasing the rated power of a KiteGen
generator is expected to be relatively low, since (differently from wind towers) the electric
equipment are kept at ground level and structural problems are much less critical.
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Figure 6.4. (a) Variation of the CF as a function of the rated power for a single 500–m2

KG–yoyo generator, at the site of De Bilt (NL) (solid) and Linate (IT) (dashed). (b) Vari-
ation of the CF as a function of the rated power per km2 for a KG–farm composed of 16
KG–yoyo units per km2, at the site of De Bilt (NL) (solid) and Linate (IT) (dashed)

6.3 Estimate of energy cost of KiteGen
On the basis of the results presented so far, a preliminary estimate of the costs of the en-
ergy produced with KiteGen is now performed, considering the KG–yoyo configuration,
and compared with the costs of the actual wind energy and of fossil energy. The produc-
tion costs for KiteGen and wind tower technologies are essentially due to the amortiza-
tion of the costs of the related structures, foundations, electrical equipments to connect
to the power grid, authorizations, site use, etc., while the maintenance costs are certainly
marginal for both technologies, though possibly higher for KiteGen. Thus, the main dif-
ferences between the two technologies are related to their structures, foundations and
required land, whose costs are significantly lower for KiteGen. In fact, as explained in
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Chapter 2, the heavy tower and the rotor of a wind turbine are replaced by light composite
fiber cables and airfoils in a KiteGen. Given the same rated power, the foundations of a
KG–yoyo have to resist to significantly lower strains and the required site dimension may
be up to 10 times lower. A reliable estimate of the energy production costs of a KG–yoyo
and of a KG–farm certainly requires more research and experimentations. However, for
all the aspects discussed so far, a very conservative estimate can be obtained, at least in
relative terms with respect to the cost of the actual wind technology, by assuming that the
cost of a KG–yoyo unit with 2–MW rated power is not greater than that of an actual wind
tower with 2–MW rated power.
In a site with CF ' 0.3, a wind farm composed of 2–MW towers with diameter D =90 m
had energy production costs between 50 and 85 $/MWh in 2006 (see [7]). Due to the fluc-
tuations of the energy market, it is difficult to obtain an accurate value of the actual cost
of wind energy, however a reliable estimate is about 110$/MWh, also considering that
the actual costs of energy production from fossil sources are in the range 60–90 $/MWh,
depending on the kind of source (coal, oil, gas). As described in Sections 4.4 and 6.2,
the considered wind turbine farm has a density of 4.5 towers per km2 (applying the the
“7D–4D rule”, see Section 1.2.1 and [6, 25]). According to the presented analyses, in
the same location a KG–farm composed of 2–MW KG–yoyo units, with the same overall
rated power (i.e. the same number of generators) as the wind turbine farm, has CF'0.6
and therefore produces an average power 2 times higher than the one of the wind turbine
farm. Then, a conservative energy cost estimate of about 55 $/MWh is obtained for Kite-
Gen. Note that the considered cost assumption is a very conservative one and that the
KG–farm has also a density of 16 KG–yoyo per km2, i.e. 3.6 times higher than the wind
turbine farm. Higher density of KG–yoyo units leads to lower land occupation (i.e. lower
costs) given the same rated power. Moreover, the study presented in Section 6.2 shows
that with the only additional costs related to the replacement of the 2–MW electric equip-
ments with 5–MW ones, the same KG–farm, i.e. with the same 500–m2 kites, can reach
a rated power 2.5 times higher and an average yearly power 3.75 times higher than those
of the wind tower farm. Note that, in order to increase the rated and average generated
power of an actual wind farm, much higher investments would be needed, since higher
and bulkier towers with bigger rotors should be employed. Thus, scale factors positively
affect the production costs of KiteGen technology, leading to cost estimates lower than
30–35 $/MWh, hence lower than fossil energy. Moreover, the high–altitude wind energy
technology can be applied in a much higher number of locations than the actual wind
technology. This is made extremely evident from the results related to the site of Linate
(IT) (see Section 6.2), where a negligible CF is obtained by an actual wind tower, while a
KG–yoyo achieves a CF greater than 0.3 which, according to the actual level of the incen-
tives for renewable energy generation, would make the use of high–altitude wind energy
technology profitable.
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Chapter 7

Conclusions and future developments

The first part of this dissertation aimed at evaluating the potential of the innovative high–
altitude wind energy technology. In particular, a class of generators denoted as Kite-
Gen has been considered, which exploits the aerodynamical forces generated by tethered
airfoils to produce electric energy. Numerical simulations, theoretical studies and opti-
mization, prototype experiments and wind data analyses have been employed to achieve
the results presented in this work. Indeed, such results show that the KiteGen technol-
ogy, capturing the wind energy at significantly higher altitude over the ground than
the actual wind towers, has the potential of generating renewable energy available
in large quantities almost everywhere, with a cost even lower than the one of fossil
energy. The key points that support this claim and that have been originally developed
throughout this dissertation are now briefly resumed.

I) Description of the KiteGen configurations and design of their operational cycles
(Chapter 2). After having delineated the concept of KiteGen technology and of the
two considered configurations, the KG–yoyo and KG–carousel, the related opera-
tional cycles have been designed. In particular, two possible operation modes for
each configuration have been evaluated, thus four different operational cycles have
been defined in total.

II) Modeling, control design and numerical simulation analyses (Chapter 3). A
model of the airfoil and of the Kite Steering Unit has been derived, on the basis
of well assessed physical equations and of a simpler kite model already introduced
in the literature. Then, a control strategy based on Nonlinear Model Predictive
Control has been originally developed in order to perform the designed operational
cycles for all of the considered KiteGen configurations. Advanced implementation
techniques, which are further investigated in Part II of this dissertation, have been
employed to achieve an efficient control implementation. Finally, numerical simu-
lations have been performed to study the system behaviour and the obtained energy
generation performance. From a first comparison of the obtained results, two of
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the four possible KiteGen configurations have been indicated as more promising,
i.e. the KG–yoyo with wing glide recovery maneuver and the KG–carousel with
constant line length.

III) Optimization of KiteGen operation (Chapter 4). The operation of the designed
energy generation cycles has been optimized using mathematical programming
tools. In particular, theoretical crosswind power equations, already developed in
the literature, have been recalled and integrated in the formulation of suitable op-
timization problems, aimed at computing the values of the operational parameters
of a KG–yoyo in order to achieve the maximal energy production. Operational
constraints have been also considered, in order to achieve practically realizable op-
erating cycles. The optimized parameters have employed to perform numerical
simulations and the good matching between theoretical and numerical results has
been assessed. Numerical simulation and theoretical equations have been also em-
ployed to assess the scalability of the system.
Finally, the design of a KG–farm, composed of several KG–yoyo units working in
the same location, has been carried out and its operation has been optimized too.

IV) Experimental activities (Chapter 5). The results of numerical simulations related
to a small scale KG–yoyo generator have been employed to design a prototype to
be used for experimental activities. The first collected experimental data have been
compared with the results of the simulations, verifying the good matching between
numerical results and real world measures. Such a good correspondence increases
the confidence with the obtained numerical and theoretical results also for medium–
to–large scale generators.

V) Wind data, capacity factor and cost analyses (Chapter 6). The capacity factor
achievable by KiteGen generators has been estimated considering several sites in
Italy and one site in The Netherlands. Then, on the basis of the obtained results and
of all the previously performed analyses, an estimate of the cost of energy obtained
with KiteGen has been made. Such estimate is about one half of the cost of fossil
energies. Moreover, the capacity factor analysis indicate that high–altitude wind
energy can be produced with good profit also in sites where the actual wind en-
ergy technology is not viable, thus allowing to enlarge the list of energy–producing
countries.

Thus, high–altitude wind energy could bring a significant contribution to resolve the ac-
tual problems related to global energy production and distribution and to excessive green-
house gases emissions.
The idea of exploiting tethered airfoils to generate energy is not new, however it is prac-
ticable today thanks to recent advancements in several science and engineering fields like
materials, aerodynamics, mechatronics and control theory. In particular, the latter is of
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basic importance in KiteGen technology and the theoretical aspects of the employed con-
trol strategy are deeply investigated in Part II of this dissertation.
Therefore, with an adequate support, the development and industrialization of the pre-
sented high–altitude wind energy technology can be carried out in a few years time, since
no more basic research or technological innovations are needed, but only the fusion of the
advanced competencies already available in various engineering fields.
The developments that should be carried out in the immediate future regards at first exper-
imental activities aimed at collecting more data on the system behaviour, in order to build
more accurate system models and to provide information to carry out a more specific de-
sign of all the components of a KiteGen generator. In particular, ad–hoc airfoil shapes
and materials, cables, transmission organs and electric equipments should be designed to
maximize the system performance. A medium–to–large scale prototype should then be
built to definitively assess the validity of the concept and of the studies performed so far.
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Efficient nonlinear model predictive
control via function approximation: the

Set Membership approach





Chapter 8

Introduction

In nonlinear model predictive control (NMPC, see e.g. [39]) the control action is com-
puted by means of a receding horizon (RH) strategy, which requires at each sampling
time the solution of a constrained optimal control problem, where the systems state x
(and, possibly, other measured parameters and reference variables) is a parameter in the
optimization. For time invariant systems, the solution of such parametric optimization
problem defines a static nonlinear function κ0(x), denoted here as the “nominal” control
law. Starting from the late 1970s, the application of predictive techniques has received
an increasing attention in industrial world (see e.g. [55]), due to its capability of treating
different kinds of control problems in a quite general framework, in the presence of both
linear and nonlinear system models, and its efficiency in handling constraints on the input,
state and output variables. However, the RH strategy can be effectively applied only if
the sampling time, employed in the considered application, is sufficiently large to allow
the solution of the optimal control problem. For this reason, NMPC is widely employed
for the control of slow and complex industrial processes (e.g. in petrochemical and power
industries, see [55]), with sampling times of the order of tens of minutes. Indeed, the po-
tential of NMPC makes this technique interesting also for systems with “fast” dynamics,
which require small sampling periods that do not allow to solve the optimization prob-
lem in real–time. In order to allow the use of MPC also for this kind of applications, a
significant research effort has been devoted in recent years to the problem of developing
techniques for the efficient implementation of model predictive control laws. Moreover,
in many applications (e.g. automotive) the capability to obtain good control performance
with low–cost hardware is a point of great importance and a key for economical success:
this aspect further motivates the research studies proposed in the literature to improve the
efficiency of NMPC and to enable its application also on processors with limited compu-
tational performance. A concise overview of the existing approaches for efficient NMPC
is given in Section 8.2. These contributions can be roughly categorized into two lines of
research: the first one aims at improving the computational efficiency of the numerical
techniques employed for the on–line optimization, while the second one investigates the
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use of an approximated NMPC law κ̂ ≈ κ0, which is computed off–line and then evalu-
ated on–line instead of solving the numerical optimization problem.
In the latter research direction, a common point to any approximation approach for ef-
ficient NMPC is the fact that the control law κ̂ is derived on the basis of the off–line
computation of a finite number ν of exact control moves. In general, the approximation
accuracy improves as ν is increased, usually at the cost of higher memory usage, on–line
computation complexity (which may even result to be higher than that of on–line opti-
mization) and off–line computation. Thus, a tradeoff between accuracy and complexity
has to be chosen in the approximation of a given NMPC law. Moreover, a crucial is-
sue, arising when the approximated function κ̂ is employed for feedback control, regards
the properties of the resulting closed loop system, in terms of stability, state and input
constraint satisfaction and degradation of the performance with respect to those of the
closed loop system obtained with the nominal control law κ0. It is quite intuitive that the
better is the approximation accuracy, the closer are the performance obtained with κ̂ to
those obtained with κ0. Therefore, the already mentioned tradeoff between accuracy and
complexity should also take into account the closed loop system properties. Needless to
say that, in order to obtain such a tradeoff, the employed approximation technique must
be such that a finite bound on the approximation error ∆κ̂ = κ0 − κ̂ exists and can be
computed or estimated as a function of ν.
In the described context, the theoretical results given in this second part of the thesis
investigate the properties of approximated NMPC laws, in terms of guaranteed accuracy,
closed loop performance, computational efficiency and memory usage and introduce tech-
niques to compute approximated control laws able to reach different tradeoffs between all
these aspects.
The presented theoretical studies have been mainly developed in the framework of Set
Membership (SM) function identification theory and they have been published in [56, 57,
58, 59, 60]. Moreover, several control applications have been studied, like semi-active
suspensions [61], vehicle yaw control [62] and control of power kites for energy genera-
tion (see Part I of this thesis and [9, 10, 11, 12, 13]). The methodological contributions
given in [56]–[60] are collected, organized and thoroughly presented in this dissertation.
This Chapter is organized as follows. Section 8.1 contains a standard formulation of
NMPC, to introduce the mathematical notation as well as the considered prior assump-
tions on the nominal control law κ0, while Section 8.2 gives a brief overview of the ex-
isting approaches for efficient NMPC implementation. Finally, the problem formulation
and the contributions given in the next Chapter of this dissertation are reported in Section
8.3.

126



8.1 – Nonlinear Model Predictive Control

8.1 Nonlinear Model Predictive Control
Consider the following nonlinear state space model:

xt+1 = f(xt,ut) (8.1)

where xt ∈ Rn and ut ∈ Rm are the system state and control input respectively. In this
thesis, it is assumed that function f in (8.1) is continuous over Rn×Rm. Assume that the
control objective is to regulate the system state to the origin under some input and state
constraints represented by a compact set U ⊆ Rm and a convex set X ⊆ Rn respectively,
both containing the origin in their interiors. Denoting by Np ∈ N and Nc ≤ Np, Nc ∈
N the prediction horizon and the control horizon respectively, the following objective
function J can be defined:

J(U,xt|t) = Φ(xt+Np|t) +
∑Np−1

j=0 L(xt+j|t,ut+j|t)

where xt+j|t denotes j step ahead state prediction using the model (8.1), given the input

sequence ut|t, . . . ,ut+j−1|t and the “initial” state xt|t = xt. U =
[
uT

t|t, . . . ,u
T
t+Nc−1|t

]T

is
the vector of the control moves to be optimized. The remaining predicted control moves
[ut+Nc|t, . . . ,ut+Np−1|t] can be computed with different strategies, e.g. by setting ut+j|t =
uNc−1|t or ut+j|t = K xt+j|t,∀j ∈ [Nc,Np−1], where K is a suitable matrix. The per–stage
cost function L(·) and the terminal state cost F (·) are chosen according to the desired
performance and are continuous in their arguments (see e.g. [45] and [63] for details).
The NMPC control law is then obtained applying the following RH strategy [45, 63]:

1. At time instant t, get xt.

2. Solve the optimization problem:

min
U

J(U,xt|t) (8.2a)

s. t.
xt+j|t ∈ X, j = 1, . . . ,Np (8.2b)
ut+j|t ∈ U, j = 0, . . . ,Np (8.2c)

3. Apply the first element of the solution sequence U of the optimization problem as
the actual control action, i.e. ut = ut|t.

4. Repeat from step 1. at time t + 1.

Indeed, additional constraints (e.g. state contraction, terminal set) may be included in
(8.2) in order to ensure stability of the controlled system. Note that the problem (8.2)
is a parametric optimization problem in which the parameter is the system state x. It is
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assumed that the problem (8.2) is feasible over a set F ⊆ Rn, which will be referred to
as the “feasibility set”. The application of the RH procedure gives rise to the following
nonlinear state feedback configuration:

xt+1 = f(xt,κ
0(xt)) = F 0(xt) (8.3)

where the nominal control law κ0 results to be a time invariant static function of the state:

ut = [ut,1 . . . ut,m]T = [κ0
1(xt) . . . κ0

m(xt)]
T = κ0(xt)

κ0 : F → U

Thus, function κ0 is implicitly defined by the solution of the parametric optimization
problem (8.2). In this work, it is assumed that the nominal NMPC law is suitably designed
so that the nonlinear autonomous system (8.3) is uniformly asymptotically stable at the
origin for any initial state value x0 ∈ F , i.e. it is stable and

∀ε > 0, ∀δ > 0 ∃T ∈ N such that
‖φ0(t + T,x0)‖2 < ε,∀t ≥ 0, ∀x0 ∈ F : ‖x0‖2 ≤ δ

where φ0(t,x0) = F 0(F 0(. . . F 0

︸ ︷︷ ︸
t times

(x0) . . .)) is the solution of (8.3) at time instant t with

initial condition x0. Note that, according to (8.2b), for any x0 ∈ F the state constraints
are always satisfied after the first time step, i.e.:

φ0(t,x0) ∈ X, ∀x0 ∈ F , ∀t ≥ 1 (8.4)

Thus, the set X ∩ F is positively invariant with respect to system (8.3):

φ0(t,x0) ∈ X,∀x0 ∈ X ∩ F ,∀t ≥ 0 (8.5)

Moreover, due to (8.2c) the input constraints are satisfied for any x ∈ F :

κ0(x) ∈ U,∀x ∈ F (8.6)

As a further assumption, it is supposed that the nominal control law κ0 is continuous over
the set X ⊆ F , considered for the approximation (see Section 8.3 for more details on the
set X ). Such property depends on the characteristics of the optimization problem (8.2):
results on this aspect can be found e.g. in [64, 65] and in [66] and the references therein.
Note that stronger regularity assumptions (e.g. differentiability) cannot be made, since
even in the particular case of linear dynamics, linear constraints and quadratic objective
function, κ0 is a piece-wise linear continuous function (see Section 8.2.2). Moreover, note
that there exist cases in which the nominal NMPC law is for sure not continuous (see e.g.
[65]). However, among the existing techniques for NMPC approximation (see Section
8.2.3), to the best of the author’s knowledge the only approaches that are able to deliver
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both an approximated controller and guaranteed accuracy bounds and stability properties
rely on the convexity of the optimal cost function J∗(x) = min

U
J(U,x) over the set X . As

it is showed in some of the numerical examples of Section 13.1, there exist cases in which
the optimal cost is not convex, while the optimal control law is continuous. Thus, in these
cases the approaches presented in this thesis can be systematically employed, while other
approaches based on the convexity of J∗(x) cannot be used or they can be applied only
with ad–hoc modifications (see Section 8.2.3 for further details).
As a final remark, note that different control problems (e.g. reference tracking) can be
treated by considering that, if the system is time invariant, the nominal control law κ0 is
a static function of the system state and of the other involved variables, like references
xref ∈ Rn and parameters θ ∈ Rq, which can be considered together as a general regressor
variable:

w =




x
xref

θ


 ∈ Rn+n+q (8.7)

Then, the control law u = κ0(w) is defined on the feasibility set Fw ⊆ Rn+n+q and it can
be approximated on a set Xw ⊆ Fw, provided that the considered stability and continuity
assumptions hold. For the sake of simplicity and without any loss of generality, in this
work the case w = x will be considered.

8.2 Approaches for efficient MPC
In this Section, a brief overview of existing techniques for efficient MPC implementation
is given. As already anticipated, such approaches rely either on more efficient on–line
optimization (Section 8.2.1), or on the off–line computation of an approximation of the
nominal control law (Section 8.2.3). Moreover, for the particular case of linear systems
with quadratic cost and linear constraints, an exact formulation of the nominal control law
can be computed off–line and stored for on–line evaluation (Section 8.2.2).

8.2.1 On–line computational improvements

The computational efficiency of MPC depends strongly on the complexity of the under-
lying optimization problem, on its formulation and on the algorithms employed for its
solution. Thus, the approaches proposed in the literature to improve the on–line effi-
ciency aim either at exploiting the structure of the mathematical programming problem
to be solved, or at employing solution techniques with higher efficiency and/or lower
complexity, even at the cost of obtaining suboptimal solutions. To provide an in–depth
survey of the existing approaches for on–line MPC computation is outside the scope of
this thesis, however for the sake of completeness a brief overview of some existing works
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(to which the interested reader is referred to for further deepening and for a more com-
plete bibliography) is now given. In the case of linear system with linear constraints and
quadratic cost, a recent work aimed at improving the on–line computational efficiency of
MPC, exploiting the particular structure of the optimization problem as well as a series of
other techniques, like warm–start and early–termination, is described in [67]. For the case
of NMPC, efficient multiple shooting methods with exploitation of the problem structure
have been proposed (see e.g. [68]), as well as real–time optimization schemes [69], in
which the optimization and the control are carried out simultaneously. Other existing ap-
proaches rely on continuation methods (see [70]), in which the control input is updated by
a differential equation which traces the solution of the RH optimal control problem (8.2).
All these approaches aim to solve efficiently the RH optimization problem in its original
formulation, i.e. using as optimization variables the predicted control inputs (and, eventu-
ally, also the predicted state values, as done in multiple shooting approaches). A different
kind of approach, which in principle could be employed together with the previous ones,
is proposed e.g. in [71], where the control input is parameterized using a suitable func-
tional form and then the optimization is carried out in the parameter space. Depending
on the choice of the parametrization, the original control problem can be simplified and
efficiently solved.
As a final comment, efficient on–line optimization is probably the only practically feasi-
ble NMPC implementation method for systems in which the nominal control law depends
on more than 8–10 variables . In fact, as it will be put into evidence in the next Sections,
the use of explicit or approximate NMPC laws leads to an exponential increment of the
memory usage and off–line computational burden with the size of x. However, in the case
of “small” state dimension and/or complex optimization problems, due to the presence
of, for example, long prediction and control horizons or a high number of (possibly non-
linear) constraints, on–line optimization may result to be less efficient than the use of an
approximate control law.

8.2.2 Exact and approximate formulations for linear quadratic MPC
In the particular case of MPC for linear systems, with quadratic cost function and linear
constraints (which will be referred to as the “linear quadratic MPC” in the following), it
has been showed [72, 73] that the exact nominal control law is a piecewise affine (PWA)
continuous function of the system state x, defined over a finite number NPart of polyhedral
partitions of the feasibility set F . In the literature such an exact MPC formulation is
referred to as the “explicit” MPC, since an explicit solution of the parametric optimization
problem (8.2) is computed for all the feasible values of the parameter x. The topic of
explicit/approximate linear quadratic MPC has been quite deeply investigated in the last
5–8 years, considering also issues like robustness of the closed loop system (see e.g. [74])
and the presence of hybrid linear models [75]. Recent surveys on explicit linear quadratic
MPC are given in [76] and [77]. For the sake of completeness, the main characteristics of
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explicit MPC are now briefly recalled. For a given state value x, the exact control move
can be computed as follows:

u = κ0(x) = Kk x + Qk, k : x ∈ Xk (8.8)

where
Xk = {x ∈ Rn : F k x−Gk ≤ 0}
F =

NPart⋃
j=1

Xj

and F k, Gk are suitable matrices defining the k–th polyhedral partition, Xk. Thus, it is
possible to compute off–line and store the matrices F j, Gj, Kj Qj, j = 1, . . . ,NPart and
implement on–line the exact MPC law κ0 using a procedure like the following:

1. At time instant t, get xt.

2. Find the partition Xk such that:
xt ∈ Xk

3. Compute the actual control action as

ut = Kk x + Qk

4. Repeat from step 1. at time t + 1.

Note that in explicit MPC the on–line optimization (8.2) is replaced with the search for
the “active” polyhedral region Xk, which the actual state value lies in. Indeed, the com-
putational burden needed to compute the linear control law u = Kk x + Qk is negligible
with respect to the time needed to perform such a search. Moreover, the memory usage of
this approach is related to the number NPart of regions and to the size of x and u. As it is
pointed out in [72], NPart increases significantly with the state dimension, with the length
of the control and prediction horizons and with the number of constraints. As a conse-
quence, severe limitations may occur in the on–line computation of the control move, due
to the increase in the computational time needed to find the active region. To mitigate this
issue, a technique to improve the efficiency of the search for the active region has been
introduced in [78], through the construction of a binary search tree to evaluate the PWA
control law, achieving logarithmic computational time in the number of regions. Other
approaches to improve the efficiency of explicit MPC have been proposed in [79] and
[80], deriving explicit suboptimal solutions with lower number of regions.
Note that the latter approaches do not provide the exact solution to the original optimiza-
tion problem and they can be therefore regarded as techniques to find an approximation
of the nominal controller κ0. However, they have been included in this Section since they
all refer to the problem of linear quadratic MPC. Thus, the techniques mentioned above
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cannot be applied in the presence of nonlinear constraints (see e.g. Example 13.1.2 in
Section 13.1) and/or nonlinear systems and non–quadratic cost functions. The next Sec-
tion gives a brief survey of the existing approaches that can cope with this limitation, to
compute off–line approximations of given MPC laws for nonlinear systems.

8.2.3 Approximate nonlinear model predictive control laws
A first contribution in the field of approximated nonlinear model predictive control has
been given in [81], using a neural network approximation of κ0. However, no guaranteed
approximation error and constraint satisfaction properties were obtained. Moreover, the
non convexity of the functional used in the “learning phase” of the neural network gives
rise to possible deteriorations in the approximation, due to trapping in local minima.
In [82], a Set Membership (SM) approximation technique has been proposed in order to
overcome such drawbacks. However, in both [81] and [82] no analysis has been carried
out on the effects of the approximated control law on the performance of the closed loop
system, which is one of the critical issues arising in the use of an approximated controller.
Some results in this direction can be found in [83], where an off–line approximate multi–
parametric programming algorithm is employed for the construction of a PWA approxi-
mation of the nominal predictive control law, defined over an hypercubic partition of the
state region X where the approximation is carried out, and its implementation via a bi-
nary search tree. A similar technique, employing a simplicial partition of X and a PWA
approximation, has been employed in [74]. In these cases, guaranteed accuracy can be
obtained, in terms of a bound on the error between the nominal and the approximated cost
functions (rather than on the control error, i.e. κ0−κ̂). However, with these approaches the
computational efficiency depends on the number of the state space partitions, which in-
creases as the required error tolerance decreases. Moreover, the obtained accuracy, closed
loop stability and constraint satisfaction properties rely on the assumption of convexity
of the optimal cost function. If such assumption is not met, ad-hoc solutions have to be
used.
A further approach for approximate NMPC has been proposed in [84], by approximating
the nonlinear system model with a set of PWA systems over the state space and comput-
ing for each one the PWA exact solution of the related linear quadratic MPC controller
[72, 73]. Then, a set of off–line solutions of such PWA control laws is considered and
a polynomial interpolation technique is employed to compute an approximation of the
overall control law. However, the approximation of a given nonlinear model with a set of
PWA systems is not a trivial task and model approximation errors are introduced. More-
over, no guarantees are given on the stabilizing properties of the computed polynomial
law.
Finally, approximation techniques based on SM theory have been further developed and
studied in [56, 57, 58, 59, 60]. In the framework of SM function approximation theory,
approximated NMPC laws with guaranteed accuracy (in terms of a bound on the error
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κ0 − κ̂) and consequent performance and stability properties have been derived, with the
only assumption of continuity of κ0 over the compact set X ⊆ F considered for the ap-
proximation.
Efficient NMPC via SM approximation techniques have been also applied to problems
like control of semi-active suspension systems [61], vehicle yaw control using a rear ac-
tive differential device [62] and control of tethered airfoils for high–altitude wind energy
generation (see Part I, Chapter 3 of this thesis and [9, 10, 11, 12, 13]).
The next parts of the thesis present the main theoretical results regarding SM approxima-
tion of NMPC, together with several numerical examples and the application to a vehicle
yaw control problem.

8.3 Problem formulation and contributions of this disser-
tation

In this Section, the problem settings and the objectives of the performed theoretical stud-
ies are briefly summarized, together with the obtained results. It is considered that the
approximating function κ̂ ≈ κ0 is defined over a compact set X , containing the origin in
its interior, such that:

κ̂ : X → R, X ⊆ F
In practice, X is a set of interest for control purposes, i.e. it is the set where the system
state usually evolves in the considered application. As already anticipated, function κ̂ is
computed on the basis of the knowledge of a finite number ν of exact control moves, i.e.:

ũk = κ0(x̃k),k = 1, . . . ,ν (8.9)

where the state values x̃k are suitably chosen and define the set:

Xν = {x̃k, k = 1, . . . ,ν} ⊆ F

It is assumed that Xν is chosen such that the following property holds:

lim
ν→∞

dH(X ,Xν) = 0 (8.10)

where dH(X,Xν) is defined as:

dH(X ,Xν) = sup
x∈X

inf
x̃∈Xν

(‖x− x̃‖2) (8.11)

Note that uniform gridding over X satisfies condition (8.10).
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Remark 2 For simplicity, all of the theoretical results presented in the following are
obtained considering the Euclidean norm ‖x̃ − x‖2 =

√
(x̃− x)T (x̃− x) to measure

the distance between two generic points x̃ and x. Such a choice gives good results in
the numerical examples of Section 13.1. However, in practical applications it is usually
needed to scale the variable x to adapt to the properties of data. This is obtained using a
weighted Euclidean norm:

‖x̃− x‖M
2 =

√
(x̃− x)T M(x̃− x) (8.12)

where
M = diag(mi), i = 1, . . . ,n (8.13)

and mi ∈ (0,1) :
n∑

i=1

mi = 1 are suitable scalar weights. An example of how to choose

such weights is given in the yaw control application of Section 13.2.

The use of κ̂(x) in place of κ0(x) leads to the autonomous system:

x̂t+1 = F̂ (x̂t) = f(x̂t,κ̂(x̂t) (8.14)

whose state trajectory at time instant t with initial condition x0 is indicated as φ̂(t,x0) =
F̂ (F̂ (. . . F̂︸ ︷︷ ︸

t times

(x0) . . .)).

A crucial issue, arising when the approximated function κ̂ is employed for feedback con-
trol, regards the stability properties of the resulting closed loop system (8.14), given the
properties of the controlled system (8.3). Moreover, it is interesting to study the link be-
tween the number and the choice of the off–line computed values ũk, k = 1, . . . ,ν and
the properties of κ̂ and of the closed loop system (8.14). Thus, the aims of the presented
work are:

I) to study the worst–case accuracy obtained by a generic approximating function κ̂ ≈
κ0, in terms of a bound on the approximation error κ̂ − κ0, and to link such a
bound to the closed loop system behaviour, deriving sufficient conditions for κ̂
to achieve guaranteed closed loop stability, constraint satisfaction and performance
degradation, in terms of distance between the state trajectories φ0(t,x0) and φ̂(t,x0).

II) to derive techniques which can be systematically employed to obtain approximating
functions with bounded error and guaranteed closed loop properties, and to study
the optimality (i.e. the capability of achieving minimal worst–case error) of such
approaches with respect to the considered prior information on κ0. To obtain suit-
able tradeoffs between accuracy, on–line computational efficiency, memory usage
and off–line computational burden.

In the described context, the contributions given by this dissertation are the following:
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I) analysis of the properties of stability, constraint satisfaction and performance
degradation of the closed loop system (8.14) (Chapter 9).
The main theoretical result states that if κ̂ enjoys three key properties, then guaran-
teed closed loop stability and performance can be obtained. Namely, such proper-
ties are satisfaction of input constraints, boundedness of the pointwise approxima-
tion error ∆κ̂(x) = κ0(x)− κ̂(x) and its convergence to an arbitrary small value, as
ν increases. The obtained guaranteed closed loop properties regard the boundedness
and convergency of the controlled state trajectories, satisfaction of state constraints
and a bound on the maximum distance between the state trajectories φ0(t,x0) and
φ̂(t,x0).

II) Analysis of the guaranteed accuracy obtained by a generic approximating func-
tion κ̂ (Chapter 10).
A general framework is considered, where κ̂ is obtained with any technique (e.g.
polynomial curve fitting, interpolation, neural networks, etc.), and sufficient condi-
tions are derived for κ̂ to satisfy the above–mentioned key properties.

III) Derivation of novel approaches to approximate a given NMPC law (Chapters
11–13).
Five different approaches are described, all of them satisfy the considered key prop-
erties and can be therefore employed to obtain approximating functions with guar-
anteed closed loop stability and performance. The first two approaches (treated in
Chapter 11), namely the “global” [56, 59] and “local” [58] SM approximations,
are optimal in the sense that they obtain the minimal worst–case error according to
the considered prior information. The other three techniques (described in Chap-
ter 12) are suboptimal (i.e. their worst–case accuracy is worse than that of the
optimal approaches) but they are able to achieve different tradeoffs between ac-
curacy, computational efficiency, memory usage and off-line computational effort
(required to derive the approximating function). Such suboptimal techniques are
the “nearest point” [57, 59], linear interpolation [60] and “SM neighborhood” [60]
approximations. Several numerical examples are given in Chapter 13, together with
an application example in the field of vehicle yaw control.
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Chapter 9

Stability and performance properties of
approximate NMPC laws

In this Chapter, starting from the assumptions and problem formulation given in Sections
8.1 and 8.3, sufficient conditions are derived for a generic approximated NMPC law κ̂
to guarantee closed loop stability and convergence properties. Section 9.1 contains some
preliminary analyses and problem settings, while the main theoretical results are given in
Section 9.2.

9.1 Problem settings
It is considered that the approximated NMPC law κ̂ enjoys the following key properties:

I) Input constraint satisfaction. For the sake of simplicity of presentation, it will be as-
sumed that U = {u ∈ Rm : ui ≤ ui ≤ ui, i = 1, . . . ,m}, where ui,ui ∈ R, i =
1, . . . ,m. Thus, the considered property is the following:

ui ≤ κ̂i(x) ≤ ui, ∀i ∈ [1,m], ∀x ∈ X (9.1)

II) The pointwise approximation error ∆κ̂(x)
.
= κ0(x)− κ̂(x) is bounded:

‖∆κ̂(x)‖ ≤ ζ, ∀x ∈ X (9.2)

where ‖ · ‖ is a suitable norm (the Euclidean norm will be considered in the follow-
ing).

III) The bound ζ(ν) converges to zero as the number ν of the off–line computed solutions
increases:

lim
ν→∞

ζ(ν) = 0 (9.3)
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Since X and the image set U of κ0 are compact sets, continuity of κ0 implies that its
components κ0

i , i = 1, . . . ,m are Lipschitz continuous functions over X , i.e. there exist
finite constants Lκ0,i, i = 1, . . . ,m such that:

∀x1,x2 ∈ X , ∀i ∈ [1,m],|κ0
i (x

1)− κ0
i (x

2)| ≤ Lκ0,i‖x1 − x2‖2 (9.4)

Thus, κ0 is Lipschitz continuous over X , i.e.:

∀x1,x2 ∈ X ,‖κ0(x1)− κ0(x2)‖2 ≤ ‖Lκ0‖2 ‖x1 − x2‖2 (9.5)

where Lκ0 = [Lκ0,1, . . . ,Lκ0,m]T . Estimates L̂κ0,i,i = 1, . . . ,m of Lκ0,i can be derived as
follows:

L̂κ0,i = inf
(
L̃i : ũh

i + L̃i‖x̃h − x̃k‖2 ≥ ũk
i , ∀k,h = 1, . . . ,ν

)
(9.6)

The next result proves convergence of L̂κ0,i to Lκ0,i,i = 1, . . . ,m.

Theorem 1
lim

ν→∞
L̂κ0,i = Lκ0,i, ∀i = 1, . . . ,m

Proof.For any x1,x2 ∈ X , consider two values x̃1,x̃2 ∈ Xν such that:

‖x1 − x̃1‖2 ≤ dH(X ,Xν)
‖x2 − x̃2‖2 ≤ dH(X ,Xν)

Property (8.10) leads to:

0 ≤ lim
ν→∞ ‖x

1 − x̃1‖2 ≤ lim
ν→∞ dH(X ,Xν) = 0;

0 ≤ lim
ν→∞ ‖x

2 − x̃2‖2 ≤ lim
ν→∞ dH(X ,Xν) = 0;

which implies that

lim
ν→∞ x̃1 = x1, ∀x1 ∈ X , lim

ν→∞ x̃2 = x2, ∀x2 ∈ X (9.7)

For any i ∈ [1,m], the estimate L̂κ0,i (9.6) of Lκ0,i is such that:

ũh
i + L̂κ0,i‖x̃h − x̃k‖2 ≥ ũk

i , ∀x̃h,x̃k ∈ Xν

which implies that:

∀x̃h,x̃k ∈ Xν ,

κ0
i (x̃

k)− κ0
i (x̃

h) = ũk
i − ũh

i ≤ L̂κ0,i‖x̃h − x̃k‖2

κ0
i (x̃

h)− κ0
i (x̃

k) = ũh
i − ũk

i ≤ L̂κ0,i‖x̃h − x̃k‖2

⇒ |κ0
i (x̃

h)− κ0
i (x̃

k)| ≤ L̂κ0,i‖x̃h − x̃k‖2, ∀x̃h,x̃k ∈ Xν (9.8)

According to (9.7), as ν → ∞ inequality (9.8) holds for any x1,x2 ∈ X , therefore L̂κ0,i tends
to satisfy definition (9.4) and to approximate the Lipschitz constant Lκ0,i of κ0

i on X for any
i = 1, . . . ,m. ¥
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Remark 3 Note that in the case of linear quadratic MPC, functions κ0
i can be explicitly

computed and are affine over a finite number NPart of polyhedral subregions Xj, j =
1, . . . ,NPart of the state space [72]. Then, by denoting with ∂κ0,j

i /∂x the gradient of κ0
i

within region Xj , the values of Lκ0,i,i = 1, . . . ,m (9.4) can be also computed as:

Lκ0,i = max
j=1,...,NPart

∥∥∂κ0,j
i /∂x

∥∥
2

(9.9)

Moreover, continuity of f over Rn × Rm implies that also f is Lipschitz continuous over
X × U with Lipschitz constant Lf , i.e.:

‖f(w1)− f(w2)‖2 ≤ Lf‖w1 − w2‖2, ∀w1,w2 ∈ X × U (9.10)

where w = (xT ,uT )T . Since f is known, Lf can be numerically or analytically computed.
Due to the Lipschitz properties (9.5) and (9.10), function F 0(x) defined in (8.3) is Lips-
chitz continuous too over X , with Lipschitz constant LF :

LF = Lf

√
1 + ‖Lκ0‖2

2 (9.11)

Remark 4 In the case of linear time invariant systems, function f(x,u) = A x + B u.
Thus, it can be easily showed that:

LF = ‖A‖+ ‖Lκ0‖2 ‖B‖ (9.12)

Consider now the one-step state trajectory perturbation induced by the use of control
function κ̂ instead of κ0. Such a perturbation can be expressed as:

x̂t+1 − xt+1 = f(xt,κ̂(xt))− f(xt,κ
0(xt)) = Ω(xt), ∀xt ∈ X (9.13)

Therefore, the following state equation is obtained:

x̂t+1 = F 0(x̂t) + e(x̂t) (9.14)

Since in general κ0(x) is not known, Ω(x) cannot be explicitly computed, but a bound µ
on its Euclidean norm can be derived from (9.2) and (9.13):

‖Ω(x)‖2
2 = ‖f(x,κ̂(x))− f(x,κ0(x))‖2

2 ≤ L2
f ‖(xT ,κ̂(x)T )T − (xT ,κ0(x)T )T‖2

2 =
= L2

f (‖(x0 − x0‖2
2 + ‖κ̂(x)− κ0(x))‖2

2) = L2
f (‖∆κ̂(x))‖2

2) ≤ L2
f ζ(ν)2, ∀x ∈ X

⇒ ‖Ω(x)‖2 ≤ Lf ζ(ν) = µ(ν) (9.15)
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Remark 5 In the case of linear time invariant systems, function f(x,u) = Ax + B u.
Thus, it can be easily showed that:

µ(ν) = ‖B‖ ζ(ν)

The value of µ(ν) depends on the number ν of exact solutions of (8.2) considered for the
approximation of κ0. On the basis of property (9.3) it can be noted that:

lim
ν→∞

µ(ν) = 0 (9.16)

Thus it is always possible to choose a suitable value of ν which guarantees a given upper
bound µ(ν) on the one–step perturbation Ω.
Given these preliminary considerations, the attention will be focused on the following
points:

I) to find sufficient conditions on µ (and, consequently, on ν) which guarantee that the
state trajectory φ̂(t,x0) is kept inside the compact set X and converge to an arbitrar-
ily small neighborhood of the origin, for any t ≥ 0 and any x0 ∈ G ⊂ X , where G
is a positively invariant set for the closed loop system (8.3):

G ⊂ X : φ0(t,x0) ∈ G,∀x0 ∈ G,∀t ≥ 0 (9.17)

Note that, due to property (8.5), if the state constraint set X is bounded and the
feasibility set F is such that X ⊂ F , any set G such that X ⊆ G ⊂ F is positively
invariant with respect to system (8.3). Moreover, note that {0} ∈ G, since the origin
is a stable fixed point for the nominal system (8.3).

II) To evaluate the constraints satisfaction properties of κ̂:

F̂ (x) ∈ X
κ̂(x) ∈ U

If κ̂ has property (9.1), only the state constraints have to be addressed.

III) To estimate an upper bound ∆(ν) of the distance d(t,x0) = ‖φ̂(t,x0) − φ0(t,x0)‖2

between the nominal and FMPC controlled state trajectories:

d(t,x0) ≤ ∆(ν), ∀x0 ∈ G, ∀t ≥ 0

such that
lim

ν→∞
∆(ν) = 0

The bound ∆ will be regarded as a measure of performance degradation of system
(8.14) with respect to system (8.3).

The results given in the next Section address all of the presented issues.
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9.2 Stability results
In order to derive the stability properties of system (8.14), the following candidate Lya-
punov function V : X → R+ will be considered:

V (x) =
T̂−1∑
j=0

‖φ0(j,x)‖2 (9.18)

where:
T̂ ≥ T

T = inf
x∈X

(T ∈ N : ‖φ0(t + T,x)‖2 < ‖x‖2, ∀t ≥ 0)

The following inequalities hold:

‖x‖2 ≤ V (x) =
V (x)

‖x‖2

‖x‖2 ≤ b ‖x‖2,∀x ∈ X (9.19)

where

b = sup
x∈X

V (x)

‖x‖2

and

V (F 0(x))− V (x) = ∆V (x) = −‖x‖2 − ‖φ0(T̂ ,x)‖2

‖x‖2

‖x‖2 ≤ −K‖x‖2,∀x ∈ X
(9.20)

with

K = inf
x∈X

‖x‖2 − ‖φ0(T̂ ,x)‖2

‖x‖2

, 0 < K < 1

Thus V (x) is a Lyapunov function for system (8.3) over X . Moreover, it can be easily
showed that V (x) is Lipschitz continuous, with Lipschitz constant L̃V :

|V (x1)− V (x2)| ≤ L̃V ‖x1 − x2‖2, ∀x1,x2 ∈ X (9.21)

with

L̃V =
T̂−1∑
j=0

(LF )j (9.22)

thus the following inequality holds:

∀x ∈ X , ∀e : (F 0(x) + e) ∈ X
V (F 0(x) + e) ≤ V (F 0(x)) + L̃V µ

(9.23)
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Note that constant L̃V as defined in (9.22) is not in general the one with the lowest value
such that (9.21) holds. From a practical point of view, a less conservative estimate L̂V of
the “best” constant LV can be computed as:

L̂V = inf(L̃V : V (x̃h) + L̃V ‖x̃h − xk‖ ≥ V (xk), ∀xk,xh ∈ Xν) (9.24)

Similarly to Theorem 1, it can be shown that lim
ν→∞

L̂V = LV . In the following, the ‖ · ‖2–
ball set centered in x is denoted as:

B(x,r) = {x̂ ∈ Rn : ‖x̂− x‖2 ≤ r, }

and notation B(A,r), A ⊆ Rn is used to indicate the set:

B(A,r) =
⋃
x∈A

B(x,r)

Theorem 2 Let κ̂ be an approximation of the nominal NMPC law κ0, computed using a
number ν of exact off–line solutions, such that (9.1)–(9.3) hold. Let G ⊂ X be a set such
that (9.17) holds. Then, it is always possible to find a suitable value of ν such that there
exists a finite value ∆ ∈ R+ with the following properties:

I) the trajectory distance d(t,x0) = φ̂(t,x0)− φ0(t,x0) is bounded by ∆:

d(t,x0) ≤ ∆,∀x0 ∈ G,∀t ≥ 0 (9.25)

II) ∆ can be explicitly computed as:

∆ = sup
t≥0

min(∆1(t,µ),∆2(t,µ)) (9.26)

where:

∆1(t,µ) =
t−1∑

k=0

(LF )kµ (9.27)

∆2(t,µ) = 2 ηt sup
x0∈G

V (x0) +
b

K
LV µ (9.28)

with η =

(
1− K

b

)
, 0 < η < 1.

III) ∆(ν) converges to 0:
lim

ν→∞
∆(ν) = 0 (9.29)
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IV) the state trajectory of system (8.14) is kept inside the set B(G,∆) for any x0 ∈ G:

φ̂(t,x0) ∈ B(G,∆),∀x0 ∈ G,∀t ≥ 0 (9.30)

V) the set B(G,∆) is contained in X

B(G,∆) ⊆ X

VI) the state trajectories of system (8.14) asymptotically converge to the set B(0,q):

lim
t→∞

‖φ̂(t,x0)‖2 ≤ q, ∀x0 ∈ G

with

q =
b

K
LV µ ≤ ∆ (9.31)

Proof.

I)–III) Choose any x0 ∈ G as initial condition for system (8.14). On the basis of (9.11), (9.14)
and (9.15) it can be noted that:

d(1,x0) = ‖φ̂(1,x0)− φ0(1,x0)‖2 = ‖F 0(x0) + e(x0)− F 0(x0)‖2 = ‖e(x0)‖2 ≤ µ

d(2,x0) = ‖φ̂(2,x0)− φ0(2,x0)‖2 = ‖F 0(φ̂(1,x0)) + e(φ̂(1,x0))− F 0(φ0(1,x0))‖2 ≤
≤ ‖e(φ̂(1,x0))‖2 + ‖F 0(φ̂(1,x0))− F 0(φ0(1,x0))‖2 ≤
≤ µ + LF ‖φ̂(1,x0)− φ0(1,x0)‖2 ≤ µ + LF µ
. . .

d(t,x0) = ‖φ̂(t,x0)− φ0(t,x0)‖2 ≤
t−1∑
k=0

(LF )kµ

Thus, the following upper bound of the distance between trajectories φ̂(t,x0) and φ0(t,x0)
is obtained:

d(t,x0) ≤
t−1∑

k=0

(LF )kµ = ∆1(t,µ) , ∀x0 ∈ G , ∀t ≥ 1 (9.32)

As t → ∞ the bound ∆1 may converge, if LF < 1, or diverge, if LF ≥ 1. Assuming
that LF ≥ 1 (see Remark 6 below for the other case), it cannot be proved, on the basis of
inequality (9.32) alone, that the trajectory distance d(t,x0) is bounded. On the other hand,
by using the properties of Lyapunov function (9.18) it is possible to compute another upper
bound ∆2(t,µ) of d(t,x0). First of all, through equations (9.20) and (9.23) the following
inequality is obtained:

∀x ∈ X , ∀e : (F 0(x) + e) ∈ X
V (F 0(x) + e) ≤ V (x)−K‖x‖2 + LV µ

(9.33)
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On the basis of (9.19) and (9.33), the state trajectory φ̂(t,x0) is such that:

‖φ̂(t,x0)‖2 ≤ V (φ̂(t,x0)) ≤
V (φ̂(t− 1,x0))−K‖φ̂(t− 1,x0)‖2 + LV µ ≤
≤ V (φ̂(t− 1,x0))− K

b
V (φ̂(t− 1,x0)) + LV µ ≤

≤ ηV (φ̂(t− 1,x0)) + LV µ ≤
. . . ≤ ηtV (x0) +

t−1∑
j=0

ηj LV µ ≤ ηtV (x0) +
1

1− η
LV µ

with η =
(

1− K

b

)
< 1. Thus, the following result is obtained:

‖φ̂(t,x0)‖2 ≤ ηtV (x0) +
b

K
LV µ

‖φ0(t,x0)‖2 ≤ ηtV (x0)
(9.34)

Inequalities (9.34) can be used to obtain the upper bound ∆2(t,µ) of the distance between
nominal and perturbed state trajectories:

d(t,x0) = ‖φ̂(t,x0)− φ0(t,x0)‖2 ≤
≤ ‖φ̂(t,x0)‖2 + ‖φ0(t,x0)‖2 ≤ 2 ηtV (x0) +

b

K
LV µ ≤

≤ 2 ηt sup
x0∈G

V (x0) +
b

K
LV µ = ∆2(t,µ) , ∀x0 ∈ X , ∀t ≥ 0

Note that, since µ < ∞ and X is compact:

∆2(t,µ) < ∞, ∀t ≥ 0

lim
t→∞∆2(t,µ) =

b

K
LV µ = q

q < ∆2(t,µ) < ∞, ∀t ≥ 0

Thus, as t increases towards ∞, the bound ∆2(t,µ) (9.28) decreases monotonically from a

finite positive value, equal to 2 sup
x0∈G

V (x0) +
b

K
LV µ, towards a finite positive value q =

b

K
LV µ, while the bound ∆1(t,µ) (9.27) increases monotonically from 0 to∞. Therefore,

for a fixed value of µ there exists a finite discrete time instant t̂ > 0 such that ∆1(t̂,µ) >
∆2(t̂,µ). As a consequence, by considering the lowest bound between ∆1(t,µ) and ∆2(t,µ)
for any t ≥ 0, the following bound ∆(µ) of d(t,x), which depends only on µ, is obtained:

∆(µ) = sup
t≥0

min(∆1(t,µ),∆2(t,µ))

q ≤ ∆(µ) < ∞
‖φ̂(t,x0)− φ0(t,x0)‖2 ≤ ∆(µ), ∀x0 ∈ G,∀t ≥ 0
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Since for any fixed positive value t̃ of t both ∆1(t̃,µ) and ∆2(t̃,µ) increase linearly with
µ(ν), on the basis of (9.16) ∆(ν) is such that

lim
ν→∞∆(ν) = 0 (9.35)

IV)–V) On the basis of (9.35), it is possible to tune ν such that, for any initial condition x0 ∈ G ⊂
X , ∆(µ) is as small as needed. Indeed, it is needed that φ̂(t,x0) ∈ X for all t ≥ 0 for all the
considered assumptions to hold. Since by hypothesis the set G (9.17) is positively invariant
for the nominal state trajectories, for a given value of ∆(µ) the perturbed state trajectories
are such that φ̂(t,x0) ∈ B(G,∆(µ)),∀x0 ∈ G, ∀t ≥ 0. Thus, it is sufficient to choose ν
such that B(G,∆(µ)) ⊆ X . Such a choice is always possible in the considered context.

VI) On the basis of (9.34) and (9.19) it can be noted that:

lim
t→∞ ‖φ̂(t,x0)‖2 ≤ lim

t→∞ ηtb‖x0‖2 +
b

K
LV µ

=
b

K
LV µ = q, ∀x0 ∈ G

¥

Remark 6 If LF < 1 (i.e. F 0 is a contraction operator), a simplified formulation for
bound ∆ is obtained. In fact, Lyapunov function (9.18) can be chosen as V (x) = ‖x‖2,
with b = 1 in (9.19) and K = (1 − LF ) in (9.20), leading to LV = 1. Thus the bound
∆2(t,µ) in (9.28) is computed as:

∆2(t,µ) = 2(LF )t sup
x0∈G

‖x0‖2 +
1

1− LF

µ

and q in (9.31) is q =
1

1− LF

µ. On the other hand the bound ∆1(t,µ) in (9.27) is such

that:
∆1(t,µ) ≤ 1

1− LF

µ, ∀t ≥ 0

therefore a simpler formulation for ∆ is obtained:

∆ = sup
t≥0

min(∆1(t,µ),∆2(t,µ)) =
1

1− LF

µ

Remark 7 A simplified formulation for bound ∆2(t,µ) is obtained if the MPC problem
(8.2) includes a state contraction constraint (see e.g. [85]):

‖φ0(t,x0)‖2 ≤ σ ‖φ0(t− 1,x0)‖2, 0 < σ < 1
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9 – Stability and performance properties of approximate NMPC laws

In this case, Lyapunov function (9.18) can be chosen as V (x) = ‖x‖2, with b = 1 in
(9.19) and K = (1 − σ) in (9.20), leading to LV = 1. Thus the bound ∆2(t,µ) in (9.28)
is computed as:

∆2(t,µ) = 2σt sup
x0∈G

‖x0‖2 +
1

1− σ
µ

and q in (9.31) is q =
1

1− σ
µ.

The main consequence of Theorem 2 is that, with the proper value of ν, for any initial
condition x0 ∈ G it is guaranteed that the state trajectory is kept inside the set X and
converges to the set B(0,q), which can be arbitrarily small since q linearly depends on µ,

i.e. : lim
ν→∞

q =

(
b

K
LV lim

ν→∞
µ(ν)

)
= 0. Moreover, on the basis of (9.25) and (9.29) it can

be noted that for any ε > 0 it is always possible to find a suitable value of ν such that
d(t,x0) < ε, ∀x0 ∈ G, ∀t ≥ 0. Therefore, for any given required regulation precision q,
using (9.31) it is possible to compute a priori a sufficient one step perturbation bound µ to
guarantee the desired accuracy. Similarly, on the basis of (9.25)–(9.28) a bound µ can be
computed a priori, such that the trajectory distance is lower than any required maximum
value ∆. Then, the approximating function κ̂ can be computed with increasing values
of ν, until the corresponding obtained value of µ is such that µ ≤ µ, thus guaranteeing
the desired performances (i.e. q ≤ q and/or ∆ ≤ ∆). Indeed, as ν → ∞ (i.e. the
performances of control system F̂ match with those of F 0), the computation time of κ̂(x)
increases in general, as well as memory usage. Thus, the value of ν can be chosen in
order to set a tradeoff between system performances, computation times and memory
requirements.
Theorem 2 does not address explicitly the problem of state constraint satisfaction for the
controlled system (8.14), i.e.:

φ̂(t,x) ∈ X,∀x ∈ G,∀t ≥ 1

However, in consequence of Theorem 2, it is possible to choose ν such that there exists a
finite number T of time steps after which the state trajectory φ̂ is kept inside the constraint
set X, for any initial condition x0 ∈ G. Moreover the value of T decreases as ν increases.
In fact, using (9.25) it follows that

∀x0 ∈ G, ∀t ≥ 0

‖φ̂(t,x0)‖2 ≤ ‖φ0(t,x0)‖2 + ∆(ν)
(9.36)

Then, considering a value of ν such that:

B(0,ε + ∆(ν)) ⊂ X (9.37)
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9.2 – Stability results

with ε > 0 “small” enough, on the basis of the uniform asymptotic stability assumption
(8.4), it is always possible to find T < ∞ such that:

‖φ0(t + T ,x0)‖2 < ε, ∀x0 ∈ G, ∀t ≥ 0

Using (9.36) it can be noted that:

‖φ̂(t + T ,x0)‖2 ≤ ‖φ0(t + T ,x0)‖2 + ∆(ν) <
< ε + ∆(ν), ∀x0 ∈ G, ∀t ≥ 0

⇒ φ̂(t + T ,x0) ∈ B(0,ε + ∆(ν)), ∀x0 ∈ G, ∀t ≥ 0

and, on the basis of (9.37):

φ̂(t + T ,x0) ∈ X, ∀x0 ∈ G, ∀t ≥ 0

thus after a finite number T of time steps there is the guarantee that state constraints are
satisfied. Note that in general the higher is ε in (9.37), the lower is T . Since the maximum
value of ε such that (9.37) holds is higher as ∆(ν) decreases, T in general decreases as
∆(ν) does, i.e. as ν increases.
The stability results presented so far assume that κ̂ satisfies the key properties (9.1)–(9.3),
which are related to the approximation accuracy of κ̂. In the next Chapter, such properties
are further investigated.
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Chapter 10

Accuracy properties of approximate
NMPC laws

In this Chapter the accuracy properties of a generic approximating function

κ̂ = [κ̂1, . . . ,κ̂m]T

derived with any approximation method (e.g. interpolation, neural networks, etc.), are
investigated. In particular, the aim is to provide sufficient conditions for κ̂ to satisfy
properties (9.1)–(9.3), i.e. to be able to guarantee the closed loop stabilizing performance
considered by Theorem 2. In the following, it is implicitly meant that any i is considered
and notation “∀i : i = 1, . . . ,m” is omitted for simplicity of reading.
The available information on κ0

i defines the following function set:

κ0
i ∈ FFSLκ0,i

= {κi : X → [ui,ui] : κi ∈ ALκ0,i
; κi(x̃) = ũi, ∀x̃ ∈ Xν} (10.1)

where:
ALκ0,i

= {κi : |κi(x
1)− κi(x

2)| ≤ Lκ0,i‖x1 − x2‖2, ∀x ∈ X} (10.2)

The following Lemma, developed from the results presented in [86], is instrumental to
prove the theoretical results presented in this Chapter.

Lemma 1 Let h : X → R be an unknown function defined over a compact domain
X ∈ Rn. Let the prior information available on h be described by:

h ∈ FFSLh
= {h̃ ∈ ALh

: h̃(x̃) = g̃, ∀x̃ ∈ Xν , g(x) ≤ h(x) ≤ g(x), ∀x ∈ X}
whereALh

is the set of Lipschitz continuous functions with Lipschitz constant Lh. Xν ∈ X
is a set containing a finite number ν of values x̃ for which the corresponding values
g̃ = h(x̃) are known:

Xν = {x̃k ∈ X : h(x̃k) = g̃k, k = . . . ,ν}
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10 – Accuracy properties of approximate NMPC laws

and g, g : X → R are Lipschitz continuous functions with Lipschitz constant Lg. Define
the functions:

h (x)
.
= min[g(x), min

x̃∈Xν

(h(x̃) + Lh‖x− x̃‖2)]

h (x)
.
= max[g(x), max

x̃∈Xν

(h(x̃)− Lh‖x− x̃‖2)]
(10.3)

Then:

I)
h (x) ≥ sup

h̃∈FFSLh

h̃ (x)

h (x) ≤ inf
h̃∈FFSLh

h̃ (x)

II) if Lg ≤ Lh, then the bounds h, h ∈ FFSLh
and they are tight:

h (x) = max
h̃∈FFSLh

h̃ (x)

h (x) = min
h̃∈FFSLh

h̃ (x)

Proof.

I) The proof is by contradiction. Suppose that a function ha ∈ FFSLh
exists such that, for a

certain x1 ∈ X ,

ha(x1) > min[g(x1), min
x̃∈Xν

(
h(x̃) + Lh‖x1 − x̃‖2

)
] = h(x1) (10.4)

Denote by x̃b a value of x̃ ∈ Xν such that:

h(x̃b) + Lh‖x1 − x̃b‖2 = min
x̃∈Xν

(
h(x̃) + Lh‖x1 − x̃‖2

)

If h(x̃b) + Lh‖x1 − x̃b‖2 ≥ g(x1), it means that

ha(x1) > g(x1) ⇒ ha /∈ FFSLh

Otherwise, if h(x̃b) + Lh‖x1 − x̃b‖2 < g(x1), it can be noted that

ha(x1) > h(x̃b) + Lh‖x1 − x̃b‖2

since it was assumed that ha ∈ FFSLh
⇒ ha(x̃b) = h(x̃b) thus:

ha(x1)− h(x̃b) = ha(x1)− ha(x̃b) > Lh‖x1 − x̃b‖2

Moreover since ha(x1) > h(x̃b)+Lh‖x1−x̃b‖2 ⇒ ha(x1) > h(x̃b) ⇒ ha(x1)−h(x̃b) > 0
then:

ha(x1)− ha(x̃b) = |ha(x1)− ha(x̃b)| > Lh‖x1 − x̃b‖2

⇒ ha /∈ FFSLh

Therefore, there is no function ha ∈ FFSLh
with the characteristics specified in (10.4), i.e.

h(x) ≥ h(x), ∀x ∈ X , ∀h ∈ FFSLh
. A similar proof holds for the lower bound h.
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II) Consider the function h. It will be now shown that h belongs to FFSLh
. Conditions h(x) ≤

g(x), ∀x ∈ X , and h(x̃) = g̃, ∀x̃ ∈ Xν , are satisfied by definition. Condition h(x) ≥ g(x)
is also satisfied, since Lg ≤ Lh and h(x) = min[g(x), min

x̃∈Xν

(h(x̃) + Lh‖x− x̃‖2)] ≥
min[g(x), min

x̃∈Xν

(g(x̃) + Lg‖x− x̃‖2)] ≥ g(x), ∀x ∈ X . About the Lipschitz continuity of

h, for any x1 ∈ X consider a value x̃b ∈ Xν such that:

h(x̃b) + Lh‖x1 − x̃b‖2 = min
x̃∈Xν

(
h(x̃) + Lh‖x1 − x̃‖2

)

If h(x̃b)+Lh‖x1− x̃b‖2 ≥ g(x1), it means that h(x1) = g(x1), thus for any x2 ∈ X , since
h(x2) ≤ g(x2), the following holds:

h(x2)− h(x1) ≤ g(x2)− g(x1) ≤ Lg‖x2 − x1‖2 ≤ Lh‖x2 − x1‖2

otherwise, if h(x̃b)+Lh‖x1− x̃b‖2 < g(x1), it means that h(x1) = h(x̃b)+Lh‖x1− x̃b‖2

and, for any x2 ∈ X , it can be noted that

h(x2) = min[g(x2), min
x̃∈Xν

(h(x̃) + Lh‖x2 − x̃‖2)] ≤ h(x̃b) + Lh‖x2 − x̃b‖2 ≤
h(x̃b) + Lh‖x2 − x1‖2 + Lh‖x1 − x̃b‖2 = h(x1) + Lh‖x2 − x1‖2

⇒ h(x2)− h(x1) ≤ Lh‖x2 − x1‖2

In a similar way, by considering a value x̃c ∈ Xν such that h(x̃c) + Lh‖x2 − x̃c‖2 =
min
x̃∈Xν

(h(x̃) + Lh‖x2 − x̃‖2) it can be shown that:

h(x2)− h(x1) ≥ −Lh‖x2 − x1‖2

Therefore, since h(x2)− h(x1) ≤ Lh‖x2 − x1‖2 and h(x2)− h(x1) ≥ −Lh‖x2 − x1‖2:

|h(x2)− h(x1)| ≤ Lh‖x2 − x1‖2, ∀x1,x2 ∈ X
⇒ h ∈ ALh

Thus, if Lg ≤ Lh function h defined in (10.3) is Lipschitz continuous with constant Lh,
belongs to FFSLh

and is a tight upper bound for h̃(x), ∀x ∈ X , ∀h̃ ∈ FFSLh
. A similar

proof holds for the tight lower bound h. ¥

As a first step, sufficient conditions are derived for any approximating function κ̂i to
obtain a bound ζi on the pointwise approximation error norm |∆κ̂,i(x)| = |κ0

i (x)− κ̂i(x)|
and, consequently, for ‖∆κ̂(x)‖2 =

√
m∑

i=1

∆2
κ̂,i(x) to be bounded (i.e. property (9.2)).

From the knowledge of the ν exact control moves computed off–line (8.9), the exact
values of ∆κ̂,i(x̃) are known:

∆κ̂,i(x̃) = ũi − κ̂i(x̃), ∀x̃ ∈ Xν

The following Theorem shows how to compute a bound on |∆κ̂,i(x)| on the basis of the
knowledge of ∆κ̂,i(x̃).
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10 – Accuracy properties of approximate NMPC laws

Theorem 3 Suppose that κ0
i ∈ FFSLκ0,i

and κ̂i is Lipschitz continuous with Lipschitz
constant Lκ̂,i and satisfies property (9.1), then:

I) the approximation error ∆κ̂,i is a Lipschitz continuous function over X , with Lipschitz
constant L∆κ̂,i

bounded as:

L∆κ̂,i
≤ Lκ̂,i + Lκ0,i (10.5)

II) |∆κ̂,i(x)| is bounded:
|∆κ̂,i(x)| ≤ ζi, ∀x ∈ X

III) A bound ζi can be computed as:

ζi = sup
x∈X

max
(
∆κ̂,i(x),−∆κ̂,i(x)

)
(10.6)

where

∆κ̂,i(x)
.
= min[ui − κ̂i(x), min

x̃∈Xν

(
∆κ̂,i(x̃) + L∆κ̂,i

‖x− x̃‖2

)
]

∆κ̂,i(x)
.
= max[ui − κ̂i(x), max

x̃∈Xν

(
∆κ̂,i(x̃)− L∆κ̂,i

‖x− x̃‖2

)
]

(10.7)

IV) if Lκ̂,i ≤ L∆κ̂,i
, the bound ζi (10.6) is the tightest one according to the available

information on κ0
i

Proof.

I) Application of Lipschitz continuity properties of κ0
i and κ̂i:

∀x1, x2 ∈ X , |∆κ̂,i(x1)−∆κ̂,i(x2)| = |κ0
i (x

1)− κ̂i(x1)− κ0
i (x

2) + κ̂i(x2)| ≤
|κ0

i (x
1)− κ0

i (x
2)|+ |κ̂i(x2)− κ̂i(x1)| ≤ Lκ0,i‖x1 − x2‖2 + Lκ̂,i‖x1 − x2‖2

⇒ |∆κ̂,i(x1)−∆κ̂,i(x2)| ≤ (Lκ0,i + Lκ̂,i)︸ ︷︷ ︸
L∆κ̂,i

‖x1 − x2‖2

Thus, function ∆κ̂,i belongs to the following set:

AL∆κ̂,i
=

{
∆i : X → R, |∆i(x1)−∆i(x2)| ≤ L∆κ̂,i

‖x1 − x2‖2, ∀x1,x2 ∈ X}

(10.8)

II)–III) Note that the pointwise value of ∆κ̂,i is bounded:

∀x ∈ X , ui ≤ κ0
i (x) ≤ ui

⇒ ui − κ̂i(x) ≤ κ0
i (x)− κ̂i(x) = ∆κ̂,i(x) ≤ ui − κ̂i(x)

and that the bounds ui − κ̂i, ui − κ̂i : X → R are Lipschitz continuous functions with
Lipschitz constant Lκ̂,i. Thus, the prior information on ∆κ̂,i is summarized by:

∆κ̂,i ∈ Di = {∆i ∈ AL∆κ̂,i
: ∆i(x̃) = ũi − κ̂i(x̃) = ∆κ̂,i(x̃), ∀x̃ ∈ Xν ,

ui − κ̂i(x) ≤ ∆i(x) ≤ ui − κ̂i(x), ∀x ∈ X} (10.9)
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where AL∆κ̂,i
is defined in (11.16). Thus, Lemma 1 can be used to compute the bounds of

Di, given by (10.7):

∆κ̂,i(x) .= min[ui − κ̂i(x), min
x̃∈Xν

(
∆κ̂,i(x̃) + L∆κ̂,i

‖x− x̃‖2

)
]

∆κ̂,i(x) .= max[ui − κ̂i(x), max
x̃∈Xν

(
∆κ̂,i(x̃)− L∆κ̂,i

‖x− x̃‖2

)
]

On the basis of these bounds, it can be noted that:

∆κ̂,i(x) ≤ ∆κ̂,i(x) ≤ max
(
∆κ̂,i(x),−∆κ̂,i(x)

)
−∆κ̂,i(x) ≤ −∆κ̂,i(x) ≤ max

(
∆κ̂,i(x),−∆κ̂,i(x)

)
|∆κ̂,i(x)| ≤ max

(
∆κ̂,i(x),−∆κ̂,i(x)

)

Thus,
∀x ∈ X , |∆κ̂,i(x)| ≤ sup

x∈X
max

(
∆κ̂,i(x),−∆κ̂,i(x)

)
= ζi(ν)

IV) If Lκ̂,i ≤ L∆κ̂,i
, due to Lemma 1 the bound ζi(ν) (10.6) is the tightest on the basis

of the available prior information on κ0
i , since it is computed on the basis of functions

∆κ̂,i, ∆κ̂,i which tightly bound the set Di. ¥

Remark 8 Note that if the approximation method employed to derive κ̂i does not guar-
antee input constraint satisfaction, condition (9.1) can be imposed by modifying κ̂i as
follows:

κ̂i,S(x) =





κ̂i(x) if ui ≤ κ̂i(x) ≤ ui

ui if κ̂i(x) < ui

ui if κ̂i(x) > ui

Remark 9 Depending on the properties of κ̂i, the Lipschitz constant Lκ̂,i can be com-
puted analytically or numerically or using a procedure similar to (9.6).

Remark 10 Note that the bound (10.5) on the Lipschitz constant of the approximation
error ∆κ̂,i(x) may be conservative. Alternatively, an estimate L̂∆κ̂,i

of L∆κ̂,i
can be com-

puted using a procedure similar to (9.6).

According to Theorem 3, a bound ζi(ν) on the approximation error can be computed for
any continuous approximated control law κ̂i and any value of ν, thus satisfying property
(9.2) with:

ζ =

√√√√
m∑

i=1

ζ2
i (10.10)

The next Theorem gives the additional condition needed to satisfy also property (9.3), i.e.
the capability of guaranteeing an arbitrary small approximation error.
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10 – Accuracy properties of approximate NMPC laws

Theorem 4 Let Xν be chosen such that (8.10) holds. Let κ0
i ∈ FFSLκ0,i

. If κ̂i satis-
fies the assumptions of Theorem 3 and moreover it satisfies the following property (data
interpolation):

κ̂i(x̃) = κ0
i (x̃) = ũi, ∀x̃ ∈ Xν (10.11)

then, in addition to the results I)–II) of Theorem 3, the following results hold:

I) the bound ζi on the approximation error can be computed as:

ζi = sup
x∈X

min [max (ui − κ̂i(x),− ui + κ̂i(x)) ,χi(x)] (10.12)

where
χi(x) = min

x̃∈Xν

(
L∆κ̂,i

‖x− x̃‖2

)

II) ζi(ν) converges to zero:
lim

ν→∞
ζi(ν) = 0

Proof.

I) Due to property (10.11), it can be noted that:

∆κ̂,i(x̃) = κ0
i (x̃)− κ̂i(x̃) = ũi − ũi = 0, ∀x̃ ∈ Xν

then, substituting ∆κ̂,i(x̃) = 0 and χi(x) = min
x̃∈Xν

(
L∆κ̂,i

‖x− x̃‖2

)
] in the computation of

ζi given in (10.6):

ζi = sup
x∈X

max[∆κ̂,i(x),−∆κ̂,i(x)] =

sup
x∈X

max[min(ui − κ̂i(x),χi(x)),−max(ui − κ̂i(x), max
x̃∈Xν

(−L∆κ̂,i
‖x− x̃‖2

)
)] =

sup
x∈X

max[min(ui − κ̂i(x),χi(x)),min(κ̂i(x)− u,χi(x))] =

sup
x∈X

min[max(ui − κ̂i(x),κ̂i(x)− ui),χi(x)]

II) Note that:

χi(x) = min
x̃∈Xν

(
L∆κ̂,i

‖x− x̃‖2

)
= L∆κ̂,i

min
x̃∈Xν

(‖x− x̃‖2) ≤ L∆κ̂,i
dH(X ,Xν)

moreover, due to its formulation, χi(x) is such that:

χi(x) ≥ 0

then, due to property (8.10):

0 ≤ lim
ν→∞χi(x) ≤ lim

ν→∞L∆κ̂,i
dH(X ,Xν) = 0

⇒ lim
ν→∞χi(x) = 0
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Moreover, note that ui − κ̂i(x) ≥ 0 and κ̂i(x) − ui ≥ 0, because κ̂i satisfies the input
saturation constraints by assumption. Thus, the value of ζi (10.12) is such that:

ζi = sup
x∈X

min [max (ui − κ̂i(x),− ui + κ̂i(x)) ,χi(x)] ≥ 0

then, it can be noted that

0 ≤ lim
ν→∞ ζi = lim

ν→∞ sup
x∈X

min (max (ui − κ̂i(x),− ui + κ̂i(x)) ,χi(x)) =

sup
x∈X

min
(
max (ui − κ̂i(x),− ui + κ̂i(x)) , lim

ν→∞χi(x)
)

= 0

⇒ lim
ν→∞ ζi = 0

¥

Theorem 4 can be used to compute an upper bound ζ (10.10) on the error obtained using
any approximated control law κ̂, which satisfies the assumptions for Theorem 3 to hold
and interpolates the off–line computed data, and to “tune” ν to guarantee a given desired
accuracy. This is sufficient to guarantee closed–loop stability and performance properties
according to Theorem 2.

Remark 11 Theorems 3 and 4 provide only sufficient conditions for a generic function κ̂
to satisfy properties (9.1)–(9.3). As it will be shown in Chapter 12, there exist approxi-
mating functions, enjoying (9.1)–(9.3), which do not satisfy the assumptions for Theorem
4 to hold. In particular, such functions are obtained with the Nearest Point or the SM
Neighborhood approaches (see Sections 12.1) and 12.3) respectively).

In the next Chapters, the attention will be focused on deriving techniques which can be
systematically applied to approximate a given NMPC law, satisfying the key properties
(9.1)–(9.3).
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Chapter 11

Optimal set membership
approximations of NMPC

In this Chapter, the problem of deriving approximating functions κ̂i fulfilling the hy-
potheses of Theorem 4 is studied. As it has been done in Chapter 10, in the following
it is implicitly meant that any i is considered and notation “∀i : i = 1, . . . ,m” is omit-
ted for simplicity of reading. Indeed, standard methods, e.g. based on expansions in
term of suitable basis functions (polynomials, sigmoids, wavelets, etc.) could be used
to satisfy the assumptions of Theorem 4. However, it is well known that in general, as
the number of basis functions is increased in order to achieve the interpolation condition
(10.11), the approximation error ‖κ0 − κ̂‖p, in terms of Lp(X ) norm, p ∈ [1,∞], defined

as ‖κi‖p
.
=

[∫
X |κi (x) |pdx

] 1
p , p ∈ [1,∞) and ‖κi‖∞ .

= ess–sup
x∈X

|κi (x) |, may become

very large. Thus, it is interesting is to find, among all functions κ̂i fulfilling the conditions
of Theorem 4, an “optimal” approximation of κ0

i , in the sense that it gives low (possibly
minimal) approximation error with respect to the considered prior assumptions. Let us
define more precisely the optimization problem to be investigated. The function κ0

i to be
approximated is assumed to belong to the Feasible Function Set defined as:

FFSi = {κi : X → [ui,ui] : κi ∈ Ai; κi(x̃) = ũi, ∀x̃ ∈ Xν} (11.1)

where Ai is a given subset of continuous functions. For given κ̂i ≈ κ0
i , the related Lp

approximation error is ‖κ0
i − κ̂i‖p. This error cannot be exactly computed, but its tightest

bound is given by:
‖κ0

i − κ̂i‖p ≤ sup
κ̃i∈FSSi

‖κ̃i − κ̂i‖p
.
= E(κ̂i) (11.2)

where E(κ̂i) is called guaranteed approximation error.
A function κSM

i is called an optimal approximation if:

E(κSM
i ) = inf

κ̂i

E(κ̂i)
.
= rp,i (11.3)
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11 – Optimal set membership approximations of NMPC

The quantity rp,i, called radius of information, gives the minimal Lp approximation error
that can be guaranteed. Note that such a κSM

i , if found, satisfies the conditions required
by Theorem 4 and has the minimal guaranteed approximation error E(κ0

i ,κ
SM
i ) achievable

from the considered information on κ0
i , summarized in the FFSi, which in turn depends

on the known values (8.9) and on other (possibly qualitative) information described by
Ai. The next Sections present two possible techniques to derive an optimal approximation
κSM

i ≈ κ0
i , which differ depending on the considered prior assumptions on the set κ0

i .

11.1 Global optimal approximation

The SM global optimal approximation (OPT), which was originally introduced in [82] on
the basis of the results of [86], is computed on the basis of the prior information (10.1)–
(10.2) on κ0

i , recalled here for simplicity of reading:

κ0
i ∈ FFSLκ0,i

= {κi : X → [ui,ui] : κi ∈ ALκ0,i
; κi(x̃) = ũi, ∀x̃ ∈ Xν}

where:
ALκ0,i

= {κi : |κi(x
1)− κi(x

2)| ≤ Lκ0,i‖x1 − x2‖2, ∀x ∈ X}
Note that the property κi ∈ ALκ0,i

is “global” in the sense that a unique Lipschitz constant
Lκ0,i is considered for the whole set X .
The prior information (10.1)–(10.2) satisfies the assumptions for results I)–II) of Lemma
1 to hold, since the bounding functions g(x) = u) and g(x) = u) are constant, i.e.
Lg = 0 < Lκ0,i. Thus, by applying Lemma 1 the following optimal bounds can be
computed:

κi
.
= sup

κ̃i∈FFSL
κ0,i

κ̃i (x) = min

[
ui, min

k=1,...,ν

(
ũk

i + Lκ0,i‖x− x̃k‖2

)] ∈ FFSLκ0,i

κi
.
= inf

κ̃i∈FFSL
κ0,i

κ̃i (x) = max

[
ui, max

k=1,...,ν

(
ũk

i − Lκ0,i‖x− x̃k‖2

)] ∈ FFSLκ0,i

(11.4)
Finding the optimal bounds is instrumental to solve the optimal approximation problem,
as shown in the next result.

Theorem 5 Consider the function:

κOPT
i (x) = 1

2
[κi (x) + κi (x)] ∈ FFSLκ0,i

(11.5)

I) Function κOPT
i (x) is an optimal approximation of κ0

i (x) for any Lp(X ) norm, with
p ∈ [1,∞]
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11.1 – Global optimal approximation

II) The radius of information is given by:

rp,i =
1

2
‖κi − κi‖p, ∀p ∈ [1,∞] (11.6)

III) For given ν, it results:

‖κ0
i − κOPT

i ‖p ≤ rp,i, ∀p ∈ [1,∞] (11.7)

IV) The radius of information r∞,i is bounded:

r∞,i ≤ Lκ0,idH(X ,Xν) (11.8)

Proof.

I)-II) Consider the diameter dp,i of FFSLκ0,i
:

dp,i = sup
κ̂i,κ̃i∈FFSL

κ0,i

‖κ̂i − κ̃i‖p

In the considered case, it is possible to show that dp,i = ‖κi − κi‖p. For any κ̂i,κ̃i ∈
FFSLκ0,i

note that:

κ̂i(x)− κ̃i(x) ≤ κi(x)− κi(x), ∀x ∈ X
κ̂i(x)− κ̃i(x) ≥ −(κi(x)− κi(x)), ∀x ∈ X
⇒ |κ̂i(x)− κ̃i(x)| ≤ |κi(x)− κi(x)|, ∀x ∈ X

Thus the following inequality holds:

‖κ̂i − κ̃i‖p ≤ ‖κi − κi‖p, ∀κ̂i,κ̃i ∈ FFSLκ0,i

and it can be concluded that:

dp,i = sup
κ̂i,κ̃i∈FFSL

κ0,i

‖κ̂i − κ̃i‖p = ‖κi − κi‖p

Therefore the radius of information rp,i of FFSLκ0,i
is bounded by [87]:

rp,i ≥ 1
2
dp,i =

1
2
‖κi − κi‖p (11.9)

Consider now the function κOPT
i =

1
2
(κi +κi). For any κ̃i ∈ FFSLκ0,i

it can be noted that:

∀x ∈ X ,

κ̃i(x)− κOPT
i (x) ≤ κi(x)− κOPT

i (x) =
1
2
(κi(x)− κi(x))

κ̃i(x)− κOPT
i (x) ≥ κi(x)− κOPT

i (x) = −1
2
(κi(x)− κi(x))

⇒ |κ̃i(x)− κOPT
i (x)| ≤ 1

2
|κi(x)− κi(x)|, ∀x ∈ X
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11 – Optimal set membership approximations of NMPC

which means that, for any p ∈ [1,∞],

‖κ̃i − κOPT
i ‖p ≤ 1

2
‖κi − κi‖p, ∀κ̃i ∈ FFSLκ0,i

As a consequence, the approximation error E(κOPT
i ) defined in (11.2) is

E(κOPT
i ) = sup

κ̃i∈FFSL
κ0,i

‖κ̃i − κOPT
i ‖p =

1
2
‖κi − κi‖p (11.10)

Since the radius of information rp,i is a lower bound of the approximation error that can be
obtained on the basis of the given prior information, the following inequality holds:

rp,i ≤ E(κOPT
i ) =

1
2
‖κi − κi‖p (11.11)

Combining inequalities (11.9) and (11.11) leads to

E(κOPT
i ) = rp,i =

1
2
‖κi − κi‖p, ∀p ∈ [1,∞]

which means that function κOPT
i is an optimal approximation for any Lp(X ) norm, with

p ∈ [1,∞]. Note that κOPT
i ∈ FFSLκ0,i

, since κi,κi ∈ FFSLκ0,i
.

III) Consequence of (11.6) and (11.10)

IV) For any x ∈ X , consider a value x̃b of x̃k,k = 1, . . . ,ν such that:

‖x− x̃b‖2 ≤ dH(X ,Xν)

Consider now functions κi(x) and κi(x). The Lipschitz continuity property leads to:

κi(x) ≤ κi(x̃b) + γi‖x− x̃b‖2, κi(x) ≥ κi(x̃b)− γi‖x− x̃b‖2

which implies, since κi(x̃b) = κi(x̃b) = ũb
i :

κi(x) ≤ ũb
i + γi dH(X ,Xν), κi(x) ≥ ũb

i − γi dH(X ,Xν)

As a consequence, for any x ∈ X the value |κi(x)− κi(x)| is bounded by:

|κi(x)− κi(x)| = κi(x)− κi(x) ≤ 2 γi dH(X ,Xν)

thus the radius of information rp,i (11.6) is bounded:

rp,i =
1
2
‖κi(x)− κi(x)‖p =

1
2

[∫
X |κi(x)− κi(x)|pdx

] 1
p ≤

≤ γi dH(X ,Xν)µL(X )
1
p , ∀p ∈ [1,∞)

r∞,i =
1
2
‖κi(x)− κi(x)‖∞ =

=
1
2

ess sup
x∈X

|κi(x)− κi(x)| ≤ γi dH(X ,Xν)

where µL(X ) =
[∫
X dx

]
< ∞ since X is compact. ¥
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11.2 – Local optimal approximation

Since function κOPT
i ∈ FFSLκ0,i

, it satisfies all the assumptions of Theorem 4. The
following approximation error bound is obtained:

|κ0
i (x)− κ̂i(x)| ≤ ζOPT

i = r∞,i, ∀x ∈ X (11.12)

Define the function:
κOPT .

= [κOPT
1 , . . . ,κOPT

m ]T

On the basis of (11.12) it can be noted that:

‖κ0(x)− κOPT(x)‖2 ≤ ‖r∞‖2 = ‖ζOPT‖2 = ζOPT, ∀x ∈ X (11.13)

with r∞ = [r∞,1, . . . ,r∞,m] and ζOPT = [ζOPT
1 , . . . ,ζOPT

m ]. Moreover, since from Theorem
4 lim

t→∞
ζOPT
i = 0, it can be noted that lim

t→∞
ζOPT = 0. Thus, properties (9.1)–(9.3) are

satisfied and the stability Theorem 2 can be applied. Moreover, κOPT
i gives the minimal

worst–case approximation error on the basis of the prior information (10.1)–(10.2).
Finally, note that, as a consequence of (11.8), the following inequality holds:

ζOPT = ‖r∞‖2 ≤ ‖Lκ0‖2 dH(X ,Xν) (11.14)

Remark 12 Functions κOPT
i ,i = 1, . . . ,m (11.5) belong to FFSLκ0,i

,i = 1, . . . ,m, thus
they are Lipschitz continuous functions with Lipschitz constants Lκ0,i,i = 1, . . . ,m defined
in (9.4). Thus the closed loop system F OPT(x) = f(x,κOPT(x)) results to be Lipschitz
continuous with Lipschitz constant LF (9.11). Then if LF < 1, system F OPT results to
be a contraction operator and its stability analysis is straightforward, since it is known
that exponential asymptotic stability in the origin is guaranteed for such systems (see e.g.
[88]).

Remark 13 As regards the computation of r∞,i,i = 1, . . . ,m, numerical approaches like
the one presented in [89] can be employed.

11.2 Local optimal approximation
As already pointed out, the OPT approximation is based on a global assumption on the
Lipschitz constant Lκ0,i, and the obtained pointwise approximation error bound depends
on such a Lipschitz constant. It is clear that the more detailed information on κ0

i is used,
the lower is the guaranteed approximation error E(κ0

i ,κ
OPT
i ). For example, the set X can

be subdivided in a finite number of subsets Xj, j = 1, . . . ,N part over which κ0
i has Lip-

schitz constants Lj
κ0,i ≤ Lκ0,i. Using the corresponding κOPT,j

i derived as in (11.5) as
approximating function of κ0

i on each subset X j could lead to significant reductions of
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11 – Optimal set membership approximations of NMPC

the guaranteed approximation error, especially in the subregions where Lj
κ0,i << Lκ0,i.

As the number of subdivisions grows, this approach allows to use information on the “lo-
cal” Lipschitz constants of κ0

i . However, the computational complexity of such approach
would grow with the number of partitions.
A simpler approach is now presented, allowing to use such “local” information to sys-
tematically derive an approximation satisfying the conditions of Theorem 4, starting from
a preliminary approximating function κ̂ which satisfies conditions for Theorem 3 only.
Moreover, the local SM technique (LOC) proposed here can be applied to improve the
accuracy of function κ̂, in terms of the bound ζi, i = 1 . . . ,m (10.12), and, depending on
the characteristics of κ̂, it also allows to compute an optimal approximation of κ0, in the
sense of (11.3).
For a given preliminary approximating function κ̂, satisfying the assumptions of Theorem
3, consider the related residue function ∆κ̂,i = κ0

i − κ̂i which, on the basis of Theorem
3, is Lipschitz continuous over X , with Lipschitz constant L∆κ̂,i

. Then, the information
available on κ0

i can be summarized by the following set FFS∆,i:

FFS∆,i = {κi : X → [ui,ui], (κi − κ̂i) ∈ AL∆κ̂,i
, κi(x̃) = ũi, ∀x̃ ∈ Xν} (11.15)

where

AL∆κ̂,i
=

{
∆i : X → R, |∆i(x

1)−∆i(x
2)| ≤ L∆κ̂,i

‖x1 − x2‖2, ∀x1,x2 ∈ X}
(11.16)

Define the following functions:

∆OPT
κ̂,i (x)

.
=

1

2
[∆κ̂,i (x) + ∆κ̂,i (x)] (11.17)

κLOC
i

.
= κ̂i + ∆OPT

κ̂,i (11.18)

where ∆κ̂,i(x) and ∆κ̂,i(x) are defined in (10.7). The next theorem states the properties
of the SM local optimal approximation κLOC

i .

Theorem 6 For any given function κ̂i satisfying the conditions of Theorem 3, the corre-
sponding function κLOC

i (11.18) enjoys the following properties:

I) Function κLOC
i interpolates the off–line computed data:

κLOC
i (x̃) = ũi, ∀x̃ ∈ Xν

II) The quantity

ζLOC
i

.
= sup

x∈X

1

2

(
∆κ̂,i(x)−∆κ̂,i(x)

)

ia a bound on the approximation error |κ0
i (x)− κLOC

i (x)|:
|κ0

i (x)− κLOC
i (x)| ≤ ζLOC

i , ∀x ∈ X (11.19)
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11.2 – Local optimal approximation

III) The bound ζLOC
i is lower than the bound ζi related to the preliminary approximating

function κ̂, computed using Theorem 3 (see (10.6)):

ζLOC
i ≤ ζi

Moreover, if Lκ̂,i ≤ L∆κ̂,i
the function κLOC

i enjoys also the following properties:

IV) κLOC
i ∈ FFS∆,i

V) κLOC
i is an optimal approximation of κ0

i with respect to the information κ0
i ∈ FFS∆,i:

sup
κ0

i∈FFS∆,i

e(κ0
i ,κ

LOC
i ) = inf

κ̃i∈FFS∆,i

sup
κ0

i∈FFS∆,i

e(κ0
i ,κ̃i) = r∆,∞,i

where r∆,∞,i is the ∞-norm radius of information of FFS∆,i [87].

Proof.

I) For any x̃h ∈ Xν , note that, due to the Lipschitz continuity (11.16) of ∆κ̂,i with constant L∆κ̂,i
:

min
x̃∈X

(∆κ̂,i(x̃) + L∆κ̂,i
‖x̃h − x̃‖2) = ∆κ̂,i(x̃h)

max
x̃∈X

(∆κ̂,i(x̃)− L∆κ̂,i
‖x̃h − x̃‖2) = ∆κ̂,i(x̃h)

Moreover, since by assumption (9.1) κ̂i satisfies the input constraints, it can be noted that:

∆κ̂,i(x̃h) = κ0
i (x̃

h)− κ̂i(x̃h) ≤ ui − κ̂i(x̃h)
∆κ̂,i(x̃h) = κ0

i (x̃
h)− κ̂i(x̃h) ≥ ui − κ̂i(x̃h)

Thus, the following result is obtained:

∆κ̂,i(x̃h) = min[ui − κ̂i(x̃h), min
x̃∈Xν

(∆κ̂,i(x̃) + L∆κ̂,i
‖x̃h − x̃‖2)] = ∆κ̂,i(x̃h)

∆κ̂,i(x̃h) = max[ui − κ̂i(x̃h), max
x̃∈Xν

(∆κ̂,i(x̃)− L∆κ̂,i
‖x̃h − x̃‖2)] = ∆κ̂,i(x̃h)

and, as a consequence:

∆OPT
κ̂,i (x̃h) =

1
2
(∆κ̂,i(x̃h) + ∆κ̂,i(x̃h)) = ∆κ̂,i(x̃h), ∀x̃h ∈ Xν (11.20)

Therefore, it can be noted that:

κLOC
i (x̃) = κ̂i(x̃) + ∆OPT

κ̂,i (x̃) = κ̂i(x̃) + ∆κ̂,i(x̃) =
= κ0

i (x̃)− κ̂i(x̃) + κ̂i(x̃) = κ0
i (x̃) = ũ, ∀x̃ ∈ Xν
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II) As it has been shown in the proof of Theorem 3, the prior information on the approximation
error ∆κ̂,i is summarized by (10.9):

∆κ̂,i ∈ Di = {∆i ∈ AL∆κ̂,i
: ∆i(x̃) = ũi − κ̂i(x̃) = ∆κ̂,i(x̃), ∀x̃ ∈ Xν

ui − κ̂i(x) ≤ ∆i(x) ≤ ui − κ̂i(x), ∀x ∈ X}

where the bounds ui − κ̂i, ui − κ̂i : X → R are Lipschitz continuous functions with
Lipschitz constant Lκ̂,i. Thus, according to Lemma 1:

∆κ̂,i(x) ≤ sup
∆i∈Di

∆i(x) ≤ ∆κ̂,i(x)

∆κ̂,i(x) ≥ inf
∆i∈Di

∆i(x) ≥ ∆κ̂,i(x)

Therefore, it can be noted that, for any x ∈ X :

κ0
i (x)− κLOC

i (x) = κ0
i (x)− κ̂i(x)− 1

2
(∆κ̂,i(x) + ∆κ̂,i(x)) =

= ∆κ̂,i(x)− 1
2
(∆κ̂,i(x) + ∆κ̂,i(x)) ≤ ∆κ̂,i(x)− 1

2
(∆κ̂,i(x) + ∆κ̂,i(x)) =

=
1
2
(∆κ̂,i(x)−∆κ̂,i(x))

−κ0
i (x) + κLOC

i (x) = −κ0
i (x) + κ̂i(x) +

1
2
(∆κ̂,i(x) + ∆κ̂,i(x)) =

= −∆κ̂,i(x) +
1
2
(∆κ̂,i(x) + ∆κ̂,i(x)) ≤ −∆κ̂,i(x) +

1
2
(∆κ̂,i(x) + ∆κ̂,i(x)) =

=
1
2
(∆κ̂,i(x)−∆κ̂,i(x))

Thus:

|κ0
i (x)− κLOC

i (x)| ≤ 1
2
(∆κ̂,i(x)−∆κ̂,i(x), ∀x ∈ X

⇒ |κ0
i (x)− κLOC

i (x)| ≤ sup
x∈X

1
2
(∆κ̂,i(x)−∆κ̂,i(x)) = ζLOC

i , ∀x ∈ X

III) Due to Theorem 3, the approximation error ∆κ̂,i is bounded by (10.6):

ζi = sup
x∈X

max
(
∆κ̂,i(x),−∆κ̂,i(x)

)

It can be noted that:

1
2
(∆κ̂,i(x)−∆κ̂,i(x)) ≤ max

(
∆κ̂,i(x),−∆κ̂,i(x)

)
, ∀x ∈ X

thus:

ζLOC
i = sup

x∈X
1
2
(∆κ̂,i(x)−∆κ̂,i(x)) ≤ sup

x∈X
max

(
∆κ̂,i(x),−∆κ̂,i(x)

)
= ζi
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IV)–V) The considered prior information on κ0
i is given by (11.15):

FFS∆,i = {κi : X → [ui,ui], (κi − κ̂i) ∈ AL∆κ̂,i
, κi(x̃) = ũi, ∀x̃ ∈ Xν}

For any generic function κ̃i, consider the corresponding error function ∆̃i = κ̃i− κ̂i. From
(11.15) it can be noted that:

κ̃i ∈ FFS∆,i ⇒ ∆̃i ∈ AL∆κ̂,i

κ̃i ∈ FFS∆,i ⇒ ∆̃i(x̃) = ũi − κ̂i(x̃), ∀x̃i ∈ Xν

κ̃i ∈ FFS∆,i ⇒ ui − κ̂i(x) ≤ ∆̃i(x) ≤ ui − κ̂i(x), ∀x ∈ X

thus, the following necessary condition is obtained:

κ̃i ∈ FFS∆,i ⇒ ∆̃i ∈ Di

On the other hand, if ∆̃i ∈ Di then:

ui − κ̂i(x) ≤ ∆̃i(x) ≤ ui − κ̂i(x)
ui ≤ ∆̃i(x) + κ̂i(x) ≤ ui

ui ≤ κ̃i(x) ≤ ui

moreover,

∆̃i ∈ Di ⇒ κ̃i(x̃) = κ̂i(x̃) + ∆̃i(x̃) = κ̂i(x̃) + ũi − κ̂i(x̃) = ũi, ∀x̃ ∈ Xν

and, due to (10.9):
∆̃i ∈ Di ⇒ κ̃i − κ̂i = ∆̃i ∈ AL∆κ̂,i

Thus the following sufficient condition is also obtained:

κ̃i ∈ FFS∆,i ⇐ ∆̃i ∈ Di

Therefore,
κ̃i ∈ FFS∆,i ⇐⇒ ∆̃i ∈ Di (11.21)

Moreover, note that:

e(κ0
i ,κ̃i) = ‖κ0

i − κ̂i − ∆̃i‖∞ = ‖∆κ̂,i − ∆̃i‖∞ = e(∆κ̂,i,∆̃i)
E(κ0

i ,κ̃i) = sup
κ0

i∈FFS∆,i

e(κ0
i ,κ̃i) = sup

∆κ̂,i∈Di

e(∆κ̂,i,∆̃i) = E(∆κ̂,i,∆̃i) (11.22)

Therefore, due to (11.21) and (11.22), finding an optimal approximation κLOC
i = κ̂i +

∆OPT
κ̂,i ≈ κ0

i such that κLOC
i ∈ FFS∆,i, considering the information κ0

i ∈ FFS∆,i, is
equivalent to finding an optimal approximation ∆OPT

κ̂,i ≈ ∆κ̂,i such that ∆OPT
κ̂,i ∈ Di, con-

sidering the information ∆κ̂,i ∈ Di:

E(κ0
i ,κ

LOC
i ) = inf

κ̃i∈FFS∆,i

E(κ0
i ,κ̃i) = inf

∆̃i∈Di

E(∆κ̂,i,∆̃i) = E(∆κ̂,i,∆OPT
κ̂,i ) = r∆,∞,i
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Thus, the aim is to show that ∆OPT
κ̂,i = 1/2 (∆κ̂,i + ∆κ̂,i) (11.17) belongs to Di and is an

optimal approximation of ∆κ̂,i. Since both ∆κ̂,i,∆κ̂,i ∈ Di (see Lemma 1), it can be noted
that:

∀x ∈ X ,

∆OPT
κ̂,i (x) = 1/2 (∆κ̂,i(x) + ∆κ̂,i(x)) ≤ ∆κ̂,i(x) ≤ ui − κ̂i(x)

∆OPT
κ̂,i (x) = 1/2 (∆κ̂,i(x) + ∆κ̂,i(x)) ≥ ∆κ̂,i(x) ≥ ui − κ̂i(x)

moreover, ∆OPT
κ̂,i ∈ AL∆κ̂,i

:

‖∆OPT
κ̂,i (x1)−∆OPT

κ̂,i (x2)‖2 ≤ 1/2(‖∆κ̂,i(x1)−∆κ̂,i(x2)‖2 + ‖∆κ̂,i(x1)−∆κ̂,i(x2)‖2) ≤
L∆κ̂,i

‖x1 − x2‖2, ∀x1,x2 ∈ X

Finally, ∆OPT
κ̂,i interpolates the available data, as shown in (11.20).

Thus, ∆OPT
κ̂,i ∈ Di.

The problem of showing that ∆OPT
κ̂,i is an optimal approximation of ∆κ̂,i, i.e. E(∆κ̂,i,∆OPT

κ̂,i ) =
inf

∆̃i∈Di

E(∆κ̂,i,∆̃i) = r∆,∞,i is analogous to that of showing that the OPT approximation

κOPT is an optimal approximation of κ0 (see the Proof of Theorem 5). Thus, this part of the
proof is omitted for brevity. ¥

According to Theorem 6, SM theory can be employed to improve the performance of a
given approximating function κ̂i. In fact, result III) of Theorem 6 shows that the error
bound ζLOC

i of the approximated NMPC law κLOC
i is lower than that of κ̂i. Moreover,

from result II) κLOC
i satisfies the data interpolation condition (10.11) for Theorem 4 to

hold, even if κ̂i does not satisfy it. The error bound (9.2) related to function κLOC =
[κLOC

1 , . . . ,κLOC
m ]T is computed as:

ζLOC =

√√√√
m∑

i=1

(ζLOC
i )

2

Moreover, if condition Lκ̂,i ≤ L∆κ̂,i
holds, the worst–case approximation error is minimal

in front of the considered prior information (11.15).

Remark 14 Theorem 6 also applies if the preliminary approximation κ̂ already satisfies
the assumptions of Theorem 4: also in this case, the error bound ζLOC

i (11.19) is lower
than the bound ζi, computed using (10.12).

Remark 15 Note that the OPT approach is a particular case of the results presented in
this paper, i.e. using κ̂i = 0. An important point is to find a condition under which the
use of κ̂i 6= 0 improves the worst–case accuracy, giving lower guaranteed approximation
errors. Indeed, it can be noted that if:

ζLOC ≤ ζOPT
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11.2 – Local optimal approximation

then the guaranteed accuracy obtained with κLOC is higher than the one given by κOPT.
As a consequence, a lower number ν of off–line computed values are sufficient for κLOC

to achieve given guaranteed stability and performance properties according to Theorem
2. Lower ν numbers may lead to lower function evaluation times, depending on the
computational burden of κ̂i.

Remark 16 Note that condition Lκ̂,i ≤ L∆κ̂,i
can be checked by computing or estimating

(e.g. using (9.6)) the Lipschitz constants Lκ̂,i and L∆κ̂,i
. Moreover, such assumption can

be always satisfied using a preliminary approximating function κ̂i whose complexity is
not too high with respect to κ0

i , with the extreme case of κ̂ = 0, i.e. Lκ̂ = 0. For example,
if κ̂i is computed as an expansion of basis functions, it is possible to improve the obtained
accuracy by gradually increasing the number of basis functions: in this case the value of
Lκ̂,i may grow and condition Lκ̂,i ≤ L∆κ̂,i

can be used as a stopping criterium, avoiding
also data over–fitting. Then, the optimal SM approximation ∆OPT

κ̂,i ≈ ∆κ̂,i can be designed
to further improve the performance of κ̂i.
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Chapter 12

Suboptimal approximations of NMPC:
the tradeoff between complexity and
accuracy

The optimal approaches presented so far achieve the minimal guaranteed error, however
their evaluation (which involves the evaluation of the upper and lower bounds (10.7)) re-
quires that all of the ν off–line computed values are considered at each sampling instant.
Thus, the obtained computational time grows linearly with ν and it may result too high for
the considered application. Thus, in this Chapter other kinds of approximating functions,
which satisfy conditions (9.1)–(9.3), are sought–after, whose approximation error is not
the optimal one, but whose computational effort is lower and, possibly, does not grow lin-
early with ν. As already pointed out, these control laws are indicated here as “suboptimal
approximations” of NMPC.
A further issue, in addition to accuracy and computational efficiency, is related to the
memory requirements of the approximated control law. In the case of the optimal ap-
proximation, the memory usage is that of the raw data only, x̃k, ũk, k = 1, . . . ,ν. As it is
showed in this Chapter, the suboptimal approximations may require that also some data
structures and additional information are stored (e.g. partitions of the set X , coefficients
of piecewise linear interpolating functions, etc.), resulting in higher memory usage.
Finally, techniques with worse accuracy usually need higher ν values to achieve a given
accuracy level, causing a growth of off–line computational time.
Thus, the approximating technique has to be chosen and employed taking into account
all of these aspects, in order to achieve a tradeoff between accuracy, on–line computa-
tional efficiency, memory usage and off–line computational burden which is suitable for
the considered application. To this end, no one of the presented approaches is better than
the others under all points of view.
As it has been done in the previous Chapters 9–10, in the following the notation κi im-
plicitly means that any i is considered and notation “∀i : i = 1, . . . ,m” is omitted for
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simplicity of reading.

12.1 Nearest point approach
The “Nearest Point” (NP) approximation is probably the simplest example of suboptimal
approximating technique. For a given value of ν, the NP approximation leads in general
to an higher approximation error bound ζNP than OPT approximation, but to lower on–
line computation times, whose growth as a function of ν is much slower than that of OPT
approximation (see the numerical examples in Section 13.1). Thus, the NP approximation
required to guarantee given stability and performance properties may need much lower
on–line computation times with respect to OPT approximation, at the cost of higher off–
line computation time and memory usage.
The NP technique is now presented. For any x ∈ X , denote with x̃NP a state value such
that:

x̃NP ∈ Xν : ‖x̃NP − x‖2 = min
x̃∈Xν

‖x̃− x‖2 (12.1)

Then, the NP approximation κNP
i (x) is computed as:

κNP
i (x) = κ0

i (x̃
NP)

κNP(x) = [κ0
1(x̃

NP), . . . ,κ0
m(x̃NP)]T

(12.2)

Such approximation trivially satisfies condition (9.1). The next Theorem 7 shows that NP
approximation (12.2) satisfies also properties (9.2) and (9.3), needed for Theorem 2 to
hold.

Theorem 7 I) The pointwise approximation error ‖κ0(x)− κNP(x)‖2 is bounded:

‖κ0
i (x)− κNP

i (x)‖2 ≤ ζNP
i

.
= Lκ0,i dH(X ,Xν), ∀x ∈ X

‖κ0(x)− κNP(x)‖2 ≤ ζNP .
= ‖Lκ0‖2 dH(X ,Xν), ∀x ∈ X (12.3)

II) The bound ζNP converges to zero:

lim
ν→∞

ζNP
i = 0

lim
ν→∞

ζNP = 0
(12.4)

Proof.

I) For any x ∈ X consider the NP approximation κNP
i (12.2). Due to the Lipschitz property (9.4)

it can be noted that:

|κ0
i (x)− κNP

i (x)| = |κ0
i (x)− κ0

i (x̃
NP)| ≤ Lκ0,i‖x− x̃NP‖2

170



12.2 – Linear interpolation

The state value x̃NP (12.1) is such that:

‖x− x̃NP‖2 = min
x̃∈Xν

‖x− x̃‖2 ≤ dH(X ,Xν)

thus,
|κ0

i (x)− κNP
i (x)| ≤ Lκ0,i dH(X ,Xν) = ζNP

i

And, as a consequence:

‖κ0(x)− κNP(x)‖2 ≤ ‖Lκ0‖2 dH(X ,Xν) = ζNP

II) The result follows directly from property (8.10):

lim
ν→∞ ζNP

i = lim
ν→∞Lκ0,i dH(X ,Xν) = 0

lim
ν→∞ ζNP = lim

ν→∞ ‖Lκ0‖2 dH(X ,Xν) = 0

¥

Remark 17 The NP approximation (12.2) satisfies the properties (9.1)–(9.3), with ζNP =
‖Lκ0‖2 dH(X ,Xν). Note that the error bound of the OPT approximation is ζOPT = ‖r∞‖2

(11.13). Since ‖r∞‖2 ≤ ‖Lκ0‖2 dH(X ,Xν) (see (11.14)), it can be noted that:

ζOPT(ν) ≤ ζNP(ν)

Thus for a given value of ν the guaranteed accuracy obtained using OPT approximation
is better than the one obtained with NP approximation. However, with NP approxima-
tion it is possible to obtain the same accuracy bound using a higher number of off–line
evaluations of the MPC control law, i.e. there exist a finite value ν ′ > ν such that:
ζNP(ν ′) ≤ ζOPT(ν). Due to the simplicity of κNP, the on–line computational times needed
to evaluate the NP approximation based on ν ′ off–line computed values may be much
lower than the one needed to evaluate the OPT approximation based on ν off–line com-
putations. Indeed, for the same reasons the NP approach requires a higher memory usage
and higher off–line computational time than OPT, given the same guaranteed accuracy.

12.2 Linear interpolation
Let X1,X2,...,Xq be a triangulation defined by the set of points Xν . Such a triangulation
is a collection of sets X1,X2,...,Xq such that

q⋃
j=1

Xj = chull(Xν),

int(Xh) ∩ int(Xj) = 0 for h 6= j,
all Xj’s are simplices (triangles for n = 2),
the vertices of the simplices are points of Xν ,
all points of Xν are vertices of the simplices.
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12 – Suboptimal approximations of NMPC: the tradeoff between complexity and accuracy

Here int(·) denotes the interior of a set and chull(·) denotes the convex hull of a set. A
triangulation partitions the convex hull of Xν into a set of simplices, which will be also
referred to as “triangles” in the following. For each triangle Xj , consider the set of points

{x̃j,k, k = 1, . . . ,n + 1 : x̃j,k is a vertex of Xj}

Since a triangle has n + 1 vertices, such a set contains n + 1 points in Rn. Let Kj
i x + Qj

i

be the hyperplane interpolating the corresponding exact control moves ũj,k = κ0
i (x̃

j,k).
The coefficients Kj

i ∈ Rn, Qj
i ∈ R can be trivially obtained as

[
Kj

i

T

Qj
i

]
=




(x̃j,1)T 1
...

...
(x̃j,n+1)T 1




−1 


ũj,1
i
...

ũj,n+1
i


 (12.5)

Assume that X ⊆chull(Xν) and define the piecewise linear approximation (LIN)

κLIN
i (x)

.
= K ĵ

i x + Qĵ
i (12.6)

where ĵ ∈ arg min
j=1,...,q

dS(x,Xj) and dS(x,XJ)
.
= inf

ξ∈XJ
(‖x− ξ‖2) is the distance between

the point x and the set Xj . Clearly, for given x ∈ X , X ĵ is a triangle which contains
x. If x ∈ int(X ĵ), this triangle is unique. According to the above definition, κLIN

i is a
continuous piecewise linear function, which can be used to approximate κ0

i . Define the
approximation error:

∆κLIN,i(x)
.
= κ0

i (x)− κLIN
i (x) (12.7)

The next result shows that κLIN
i (x) satisfies input constraints and that ∆κLIN,i(x) is bounded

and converges to 0 as ν →∞, for any x ∈ X .

Theorem 8 The following properties hold:

I) κLIN
i (x) ∈ [ui, ui],∀x ∈ X .

II) The pointwise approximation error ∆κLIN,i(x) of κLIN
i is bounded as

∀x ∈ X , |∆κLIN,i(x)| ≤ eLIN
i (x) =

= |κOPT
i (x)− κLIN

i (x)|+ 1

2
(κi(x)− κi(x)) ≥ 1

2
(κi(x)− κi(x))

∀x ∈ X , eLIN
i (x) ≤ ζLIN

i = sup
x∈X

eLIN
i (x) ≥ ζOPT

i

(12.8)

III) lim
ν→∞

ζLIN
i (ν) = 0

Proof.
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12.2 – Linear interpolation

I) For any x ∈ X , consider the the vertices x̃l, l = 1, . . . ,n + 1 of the partition X ĵ : ĵ ∈
arg min

j=1,...,q
dS(x,Xj), and the corresponding exact control moves ũl

i = κ0
i (x̃

l). Note that

ũl
i = κLIN

i (x̃l) by definition (12.5). The point x can be expressed as:

x =
n+1∑
l=1

wl x̃
l, wl > 0∀l ∈ [1,n + 1],

n+1∑
l=1

wl = 1

and the approximated control move κLIN
i (x) can be therefore computed as:

κLIN
i (x) =

n+1∑
l=1

wl (K
j
i x̃

l + Qj
i ) =

=
n+1∑
l=1

wl κ
LIN
i (x̃l) =

n+1∑
l=1

wl ũ
l
i

thus it can be noted that:

κLIN
i (x) ≤ max

l=1,...,n+1
(ũl

i)
n+1∑
l=1

wl = max
l=1,...,n+1

(ũl
i) ≤ ui

κLIN
i (x) ≥ min

l=1,...,n+1
(ũl

i)
n+1∑
l=1

wl = min
l=1,...,n+1

(ũl
i) ≥ ui

⇒ κLIN
i (x) ∈ [ui, ui]

II) Due to the properties of the optimal bounds κi(x), κi(x) (11.4), already showed in the proof
od Theorem 5, it can be noted that:

|∆κLIN,i(x)| = |κ0
i (x)− κLIN

i (x)| = |κ0
i − κOPT

i (x) + κOPT,i(x)− κLIN
i (x)| ≤

≤ |κOPT
i (x)− κLIN

i (x)|+ |κ0
i (x)− κOPT

i (x)| ≤
≤ |κOPT

i (x)− κLIN
i (x)|+ 1

2
(κi(x)− κi(x)) = eLIN

i (x) ≥ 1
2
(κi(x)− κi(x))

eLIN
i (x) ≤ sup

x∈X
eLIN
i (x) = ζLIN

i ≥ sup
x∈X

|κ0
i (x)− κOPT

i (x)| = ζOPT
i

III) Considering that lim
ν→∞

1
2
(κi(x)− κi(x)) = 0, ∀x ∈ X (i.e. lim

ν→∞κOPT(x) = κ0(x)) and that,

since κ0
i is Lipschitz continuous, lim

ν→∞κLIN
i (x) = κ0

i (x), ∀x ∈ X , it can be noted that:

∀x ∈ X , lim
ν→∞ eLIN

i (x) = lim
ν→∞ |κ

OPT
i (x)− κLIN

i (x)|+ lim
ν→∞

1
2
(κi(x)− κi(x)) =

= |κ0
i (x)− κ0

i (x)|+ 0 = 0

thus
lim

ν→∞ ζLIN
i (ν) = lim

ν→∞ sup
x∈X

eLIN
i (x,ν) = 0
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¥

Define the following approximating function:

κLIN(x) = [κLIN
1 (x), . . . ,κLIN

m (x)]T (12.9)

According to Theorem 8, function κLIN(x) satisfies properties (9.1)–(9.3), with ζLIN =√
m∑

i=1

(ζLIN
i )2 ≥ ζOPT (11.13). Thus, given the same value of ν the guaranteed approxima-

tion error obtained with LIN technique is higher than that of the OPT approach. Note that
in general the bound ζLIN may be higher than that of NP approach too, depending on how
the off–line computed data are chosen. However, from a practical point of view, the LIN
technique gives very good accuracy with low ν values. This is due to the fact that all the
results presented in this dissertation refer to worst–case error bounds only.

12.3 SM Neighborhood approach

Let X1,X2,...,Xq be a collection of sets such that

X ⊆
q⋃

j=1

Xj. (12.10)

For any x ∈ X , let ĵ ∈ arg min
j=1,...,q

dS(x,Xj), so that X ĵ contains x. Define the sets of

indices

P j .
=

{
k : x̃k ∈ Xj ∪ {x̃NP}} , j = 1, . . . ,q (12.11)

The SM neighborhood (NB) approximation of κ0
i is given by:

κNB
i (x)

.
=

1

2
[κNB

i (x) + κNB
i (x)] (12.12)

with

κNB
i (x)

.
= min

[
ui, min

k∈P ĵ

(
ũk

i + Lκ0,i‖x− x̃k‖2

)]

κNB
i (x)

.
= max

[
ui, max

k∈P ĵ

(
ũk

i − Lκ0,i‖x− x̃k‖2

)] (12.13)
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Note that the function κNB
i is defined similarly to κOPT

i , except that only a subset of points
of Xν is used to compute the (suboptimal) bounds κNB

i (x) and κNB
i (x). In order to inves-

tigate the properties of κNB
i , let us define the indices

ki
.
= arg min

k=1,...,ν
(ũk

i + Lκ0,i‖x− x̃k‖2)

ki
.
= arg max

k=1,...,ν
(ũk

i − Lκ0,i‖x− x̃k‖2)

ji
.
= arg min

k∈P ĵ

(
ũk + Lκ0,i‖x− x̃k‖2

)

j
i

.
= arg max

k∈P ĵ

(
ũk

i − Lκ0,i‖x− x̃k‖2

)

Moreover, define the following scalar quantities:

δi(x) = Lκ0,i(‖x̃ki − x̃ji‖2 + ‖x̃ki − x̃j
i‖2) (12.14)

∆κNB,i(x)
.
= κ0

i (x)− κNB
i (x)

Theorem 9 The following properties hold:

I) κNB
i (x) ∈ [ui, ui],∀x ∈ X

II) The pointwise approximation error ∆κNB,i(x) of κNB
i is bounded as

∀x ∈ X , |∆κNB,i(x)| ≤ eNB
i (x)

.
= min(Lκ0,idH(X ,Xν), δi(x) +

1

2
(κi(x)− κi(x)))

∀x ∈ X , eNB
i (x) ≤ ζNB

i = sup
x∈X

eNB
i ≤ Lκ0,idH(X ,Xν) = ζNP

i

where ζNP
i is the guaranteed accuracy obtained by the NP approximation (12.3)

III) The following convergence property holds:

lim
ν→∞

ζNB
i (ν) = 0. (12.15)

IV) If ki = ji and ki = j
i

then
κNB

i (x) = κOPT
i (x). (12.16)

Proof.

I) From (12.12)–(12.13) it can be noted that, for any x ∈ X :

κNB
i (x) =

1
2
(κNB

i + κNB
i ) ≤ κNB

i ≤ ui

κNB
i (x) =

1
2
(κNB

i + κNB
i ) ≥ κNB

i ≥ ui

⇒ κNB
i (x) ∈ [ui, ui]
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II) For any x ∈ X , note that (from (11.4) and (12.13)):

κNB
i (x) ≤ κi(x) ≤ κ0

i (x) ≤ κi(x) ≤ κNB
i (x)

κNB
i (x)− κNB

i (x) ≤ κ0
i (x)− κNB(ix) ≤ κNB

i (x)− κNB
i (x)

−1
2
(κNB

i (x)− κNB
i (x)) ≤ κ0

i (x)− κNB
i (x) ≤ 1

2
(κNB

i (x)− κNB
i (x))

⇒ |κ0
i (x)− κNB

i (x)| ≤ 1
2
(κNB

i (x)− κNB
i (x)) (12.17)

Consider now the distance between the optimal upper bound κi(x) (11.4) and the subopti-
mal upper bound κNB

i (x) (12.13). Since by definition κi(x) ≤ κNB
i (x) ≤ ui, if κi(x) = ui

then κNB
i (x)− κOPT

i (x) = ui − ui = 0. Otherwise note that:

0 < κNB
i (x)− κi(x) ≤ ũ

ji
i + Lκ0,i‖x− x̃ji‖2 − ũki

i − Lκ0,i‖x− x̃ki‖2 ≤
≤ Lκ0,i‖x̃ji − x̃ki‖2 + Lκ0,i‖x− x̃ji − x + x̃ki‖2 = 2Lκ0,i‖x̃ji − x̃ki‖2

Similarly,it can be obtained that:

0 < κi(x)− κNB
i (x) ≤ ũ

ki
i − Lκ0,i‖x− x̃ki‖2 − ũ

j
i

i + Lκ0,i‖x− x̃j
i‖2 ≤

≤ Lκ0,i‖x̃j
i − x̃ki‖2 + Lκ0,i‖x− x̃j

i − x + x̃ki‖2 = 2Lκ0,i‖x̃j
i − x̃ki‖2

thus, the distance between the OPT and NB approximations is bounded:

|κOPT
i (x)− κNB

i (x)| =
=

1
2
|κi(x) + κi(x)− κNB

i (x)− κNB
i (x)| ≤

≤ 1
2
(|κi(x)− κNB

i (x)|+ |κi(x)− κNB
i (x)|) ≤

≤ Lκ0,i(‖x̃ji − x̃ki‖2 + ‖x̃j
i − x̃ki‖2) = δi(x)

(12.18)

Consequently, note that:

|∆κNB,i(x)| = |κ0
i (x)− κNB

i (x)| ≤
≤ |κ0

i (x)− κOPT
i (x) + (κOPT

i (x)− κNB
i (x))| ≤

≤ δi(x) +
1
2
(κi(x)− κi(x)), ∀x ∈ X

(12.19)

At the same time, since by construction (12.11) for any x ∈ X the set of points {x̃j : j ∈
P ĵ} contains the nearest neighbor x̃NP of x, it can be noted that (from (12.13)):

κNB
i ≤ ũNP

i + Lκ0,i‖x− x̃NP‖2

κNB
i ≥ ũNP

i − Lκ0,i‖x− x̃NP‖2

Thus, from (12.17):

|∆κNB,i(x)| = |κ0
i (x)− κNB

i (x)| ≤
1
2
(κNB

i (x)− κNB
i (x)) ≤

≤ 1
2
(ũNP

i + Lκ0,i‖x− x̃NP‖2 − ũNP
i + Lκ0,i‖x− x̃NP‖2) =

= Lκ0,i‖x− x̃NP‖2

(12.20)
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By considering the tightest bound between (12.19) and (12.20) and taking into account the
formulation of the error bound of NP approximation (12.3), it can be obtained that:

|∆κNB,i(x)| ≤ min(Lκ0,i‖x− x̃NP‖2,
1
2
(κi(x)− κi(x)) + δ(x)) = eNB

i (x) ≤
≤ Lκ0,i‖x− x̃NP‖2, ∀x ∈ X
ζNB
i = sup

x∈X
eNB
i ≤ Lκ0,idH(X ,Xν) = ζNP

i

III) Trivially follows from (12.20) and the property (12.4) of the NP approximation

IV) Trivially follows from (12.18) by using ki = ji and ki = j
i

¥

Define the following approximating function:

κNB(x) = [κNB
1 (x), . . . ,κNB

m (x)]T (12.21)

According to Theorem 9, function κNB(x) satisfies properties (9.1)–(9.3), with ζNB =√
m∑

i=1

(ζNB
i )2. Moreover, the following inequalities hold:

ζOPT ≤ ζNB ≤ ζNP

Thus, the guaranteed accuracy obtained with NB technique, which clearly depends on the
performed partition (12.10), is between those of NP and OPT approaches.

Remark 18 For given number of data ν, under suitable choices of the sets X1,X2,...,Xq

and using efficient search algorithms, the NB approximation leads to a significantly better
on–line computational efficiency than the OPT approximation, at the expense of higher
memory usage and some degradation of the worst case approximation error. However
note that, as already pointed out for the linear interpolation, in practical applications
such a degradation does not necessarily imply that the performance of the suboptimal
techniques are worse than those of the optimal one. These aspects will be highlighted in
the numerical examples of Section 13.1.
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Chapter 13

Examples

This Chapter presents a series of numerical examples to practically show the effective-
ness and the characteristics of the presented approximation approaches. Moreover, in
Section 13.2 the application of NP technique to a vehicle yaw control problem is de-
scribed. Indeed, the presented examples aim to illustrate the applicability of the NMPC
approximations and to compare the computational efficiency of the various methods in
relative terms only.

13.1 Numerical examples

13.1.1 Example 1: double integrator
Consider the double integrator system:

xt+1 =

[
1 1
0 1

]
xt +

[
0.5
1

]
ut

A predictive controller is designed using a quadratic cost function J :

J(U,xt|t) = xT
t+N |tPxt+N |t +

∑N−1
k=0 {xT

t+k|tQxt+k|t + uT
t+k|tRut+k|t} (13.1)

where P Â 0, Q = QT Â 0 and R = RT Â 0 are positive definite matrices. The
following choice has been made in the considered example:

Q =

[
4 0
0 1

]
, R = 1, P =

[
0 0
0 0

]
, N = 5

Input and output constraints are defined by:

X = {x ∈ R2 : ‖x‖∞ ≤ 1}, U = {u ∈ R : |u| ≤ 1}
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The MATLABr Multi–Parametric Toolbox [90] has been used to compute the explicit
MPC solution [72]. The obtained feasibility set F is reported in Fig. 13.1. The number of
regions (after the merging of regions with the same control law) over which the nominal
control law κ0 is affine is equal to 5. The computed values of the Lipschitz constants

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

     x x x x1111

     
x x  x x

22 22

B(  ,∆)G

F

X

G

Figure 13.1. Example 1: sets F = X (solid line), G (dashed line), B(G,∆)
(dash–dotted line) and X (dotted line). Sets G and B(G,∆) obtained using OPT
approximation with ν ' 1.6 106.

(9.6) and (9.12) are Lκ0 = 1.4 and LF = 3.19 respectively. The set X = F has been
considered for the approximation of κ0 and Lyapunov function (9.18) has been computed
with T̂ = 7: the resulting values of b and K in (9.19) and (9.20) are b = 3.15, K = 0.99,
while L̂V of (9.24) is L̂V = 8.1.
Assume that the required regulation precision is ‖xt‖2 ≤ q = 5 10−2 for t → ∞. Ac-
cording to (9.31), the corresponding sufficient value of µ is equal to µ = (q K)/(b LV ) =
1.9 10−3. By performing OPT approximation κOPT of κ0 with ν ' 1.6 106, a value of
µ = 1.4 10−3 < µ is obtained, which leads to q = 3.7 10−2 < q. The corresponding
upper bound ∆ (9.25) on distance trajectories can be computed using (9.26), via the com-
putation of the bounds ∆1(t) (9.27) and ∆2(t) (9.28): the obtained value is ∆ = 0.849. A
graphical interpretation of the computation of ∆1, ∆2 and ∆ is reported in Fig. 13.2. The
obtained set G and the corresponding set B(G,∆) ⊆ F (9.30) are reported in Fig. 13.1.
Fig. 13.3 shows the distance between the state trajectories, obtained with the nominal
and the approximated controllers, during a simulation performed considering the initial
state x0 = [0.54, − 0.67]T : it can be noted that such a distance is practically zero. As
a matter of fact, the obtained properties of the system regulated using the approximated
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line) obtained with OPT approximation and ν ' 1.6 106.
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Figure 13.3. Example 1: distance d(t,x0) between the state trajectories obtained with
the nominal and the approximated controllers, with initial state x0 = [0.54, − 0.67]T .
Approximation carried out with OPT approach and ν ' 1.6 106.

controller are quite good despite the computed theoretical values of ∆ and q. This fact
highlights that the stability and performance conditions claimed in Theorem 2 may prove
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Figure 13.4. Example 1: state trajectories obtained with the nominal (dashed line
with triangles) and the approximated (solid line with asterisks) controllers, initial state
x0 = [0.54, − 0.67]T . Approximation carried out with OPT approach and ν ' 1.6 106.

to be conservative, being only sufficient. Indeed, with a much lower number ν of off–
line solutions, stability and performance are kept for any x0 ∈ X . A typical example is
reported in Fig. 13.5, which shows the state trajectories in the case ν ' 103 with initial
state x0 = [0, − 1.45]T /∈ G near the boundary of X = F . Clearly, a lower number
of off–line solutions leads to lower computational efforts and memory usage: to evaluate
the on–line computational times as well as performance degradation obtained with the
approximated control law, a number NSIM of simulations have been performed, consid-
ering any initial condition xSIM

0 computed via uniform gridding over X with a resolution
equal to 0.01 for both state variables. Each simulation lasted 500 time steps. Then, the
mean computational time t over all the initial conditions and all the time steps of each
simulation has been computed, together with the maximum trajectory distance obtained
over all the simulations:

∆SIM = max
xSIM
0

(
max

t∈[1,500]

(‖φSM(t,xSIM
0 )− φ0(t,xSIM

0 )‖2

))

The following estimate of regulation precision has been also considered:

qSIM = max
xSIM
0

(
max

t∈[301,500]

(‖φSM(t,xSIM
0 )‖2

))

Finally, also the mean value ∆u and the maximum value ∆MAX
u of the approximation er-

ror ‖κ0(x)− κ̂(x)‖2 over all time instants of all simulations have been considered. These

182



13.1 – Numerical examples

-3 -2 -1 0 1 2 3
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

     x x x x
1111

     
x x  x x
22 22

XXXX

FFFF

Figure 13.5. Example 1: state trajectories obtained with the nominal (dashed line
with triangles) and the approximated (solid line with asterisks) controllers, initial state
x0 = [0, − 1.45]T . Approximation carried out with OPT approach and ν ' 103.

values have been computed employing different values of ν: the obtained results in the
case of OPT approximation are reported in Table 13.1, together with the theoretical values
∆(ν), q(ν) and ζ(ν) obtained using the results of Theorems 2 and 5. As it was expected,
the obtained estimates of the maximum trajectory distance ∆SIM, regulation precision qSIM

and mean and maximum approximation errors ∆u and ∆MAX
u are bounded by their respec-

tive theoretical values, ∆, q and ζ . However, these bounds are not strict, being obtained
on the basis of sufficient conditions only. Moreover, note that with any considered value
of ν the state trajectory has been always kept inside the set X for any considered initial
condition and inside the constraint set X for any t ≥ 1. Finally, variable u always satisfied
the input constraints, as it was expected. The obtained computational times depend on the
employed calculator and on the algorithm implementation: in this case MATLABr 7 and
an AMD Athlon(tm) 64 3200+ with 1 GB RAM have been used and no particular ef-
fort was made to optimize the numerical computation of κOPT(x). On the same platform,
the mean computational time obtained with on–line optimization (using the MATLABr

quadprog function) is about 2.5 10−2 s, while the mean computational time obtained
with the toolbox developed by [90] for the calculation of the explicit solution is about
2.2 10−3 s. As regards input and state constraints satisfaction, in Fig. 13.6 it can be noted
that the input variable is kept inside the set U for any t ≥ 0, as it was expected, while Fig.
13.5 shows that the state trajectory is kept inside the constraint set X for any t ≥ 1.
In this example, NP approximation has been tested too, using the same off–line computed
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Table 13.1. Example 1: properties of approximated MPC using OPT approximation.
ν ' 1.6 106 ν ' 105 ν ' 5 103 ν ' 103

t 5.4 10−1 s 2.2 10−2 s 7.8 10−4 s 3.8 10−4 s
∆SIM 1.6 10−9 1 10−2 3 10−2 9 10−2

∆ 8.5 10−1 1.35 2.5 3.2
qSIM 1.7 10−16 4 10−9 4 10−6 1.5 10−4

q 3.7 10−2 1.6 10−1 7.8 10−1 1.5
∆u 2.4 10−12 5.9 10−11 4.3 10−7 2.5 10−3

∆MAX
u 4.5 10−11 7.4 10−10 8.8 10−6 1 10−2

ζ 1.3 10−3 5.5 10−3 2.7 10−2 5.2 10−2
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Figure 13.6. Example 1: nominal input variable ut = κ0(xt) (dashed line with
triangles) and approximated input variable uOPT

t = κOPT(xOPT
t ) (solid line with as-

terisks). Approximation carried out with OPT approach and ν ' 103 (left) and
ν ' 5 103 (right). Initial state x0 = [0, − 1.45]T

values of κ0(x̃k) employed for the OPT approximation. Table 13.2 contains the estimates
of mean computational time, maximum trajectory distance, regulation precision and ap-
proximation errors obtained with NP approximation and different values of ν, together
with the theoretical values ∆(ν), q(ν) and ζ(ν). Finally, Fig. 13.7 shows the growth, as a
function of ν, of the mean computational times needed to evaluate OPT and NP approxi-
mations. Note that the evaluation times of OPT approximation grow linearly with ν, while
those obtained with NP approximation are practically constant: this can be obtained with
a suitable storage criterion for the off–line computed data, which leads to computational
times that depend on the number of state variables but not on the value of ν. In all the
performed simulations, uniform gridding over X has been used to obtain the set Xν and to
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Table 13.2. Example 1: properties of approximated MPC using NP approximation.
ν ' 1.6 106 ν ' 105 ν ' 5 103 ν ' 103

t 3.5 10−5 s 4 10−5 s 4.5 10−5 s 2.6 10−5 s
∆SIM 3.4 10−3 1.5 10−2 6.5 10−2 1.3 10−1

∆ 1.3 2 3.9 5.4
qSIM 3.2 10−3 1.3 10−2 4.7 10−2 1.3 10−1

q 7.1 10−2 2.8 10−1 1.4 2.9
∆u 4.7 10−4 1.7 10−3 2 10−2 5 10−2

∆MAX
u 1.3 10−3 3 10−3 3 10−2 7 10−2

ζ 2.6 10−3 5 10−3 5 10−2 1 10−1
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Figure 13.7. Example 1: mean computational time as function of ν for OPT (upper) and
NP approximation methodologies.

compute the corresponding exact control moves ũk,k = 1, . . . ,ν. In order to improve the
regulation precision of both OPT and NP approximated control laws, it is also possible to
employ a more dense gridding of exact MPC solutions near the origin.
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13.1.2 Example 2: two inputs, two outputs linear system with state
contraction constraint

In this example, the following two inputs system, originally introduced in [91], is consid-
ered:

xt+1 =

[
0.98 0
0 0.98

]
xt +

[
0.8 −1
−0.6 0.8

]
ut

State and input constraints are also taken into account:

X = {x ∈ R2 : ‖x‖∞ ≤ 2}, U = {u ∈ R2 : ‖u‖∞ ≤ 1}
The nominal MPC control law has been designed using a quadratic cost function (13.1)
with the following parameters

Q =

[
0.1 0
0 0.1

]
, R =

[
1 0
0 1

]
, P =

[
0 0
0 0

]
, N = 5

Moreover, a state contraction constraint has been added:

‖xt+1|t‖2 ≤ σ‖xt|t‖2

with σ = 0.96. The MOSEK c© optimization toolbox for MATLABr [92] has been
employed to evaluate the Feasibility set F and to compute off–line the needed values
of κ0(x). The set X = F considered for the approximation of κ0 is reported in Fig.
13.8, together with the level curves of the optimal cost function J(U∗(x)). Note that the
optimal cost function is not convex, due to the presence of the contraction constraint.
Therefore, in this case stability and constraint satisfaction properties cannot be guar-
anteed with the procedure proposed by [93]. Moreover, κ0(x) results to be continuous
but it is not piecewise affine. In fact, no explicit solution can be easily obtained in this
case. The Lipschitz constants Lκ0,1 and Lκ0,2 have been estimated according to (9.6) as
Lκ0,1 = 5.33, Lκ0,2 = 4.48. The resulting value of LF in (9.11) is LF = 12.29. The
Lyapunov function parameters are b = 1, LV = 1, K = 0.04 (see Remark 7 in Section
9.2). NP approximation has been carried out employing ν ' 4.3 105 exact MPC solu-
tions, obtaining ∆ = 15.04 and q = 1.99. A comparison of the state courses is shown in
Fig. 13.9, starting from the initial state x0 = [−3, 0.4]T , while the trajectory distance is
reported in 13.10. The nominal and approximated input values are shown in Fig. 13.11.

The approximated control law has the same properties of the nominal one, i.e. state
and input constraints are satisfied and the obtained maximum trajectory distance is lower
than 7 10−3, while the regulation precision is lower than 1 10−3. Fig. 13.12 shows the
behaviour of the contraction ratio ‖xt+1‖2/‖xt‖2: note that the two curves match, thus
also the contraction constraint is satisfied with the NP approximated control law. As
regards the evaluation times, the mean computational time obtained with MOSEK c© is
equal to 0.016 s, while the NP approximation mean computational time is about 3 10−5 s,
thus showing the good computational speed improvement obtained with the approximated
controller.
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Figure 13.8. Example 2: set F = X (solid), constraint set X (dotted) and level curves of
the optimal cost function J(U∗(x)).
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Figure 13.9. Example 2: nominal state course (dashed line) and the one obtained with
the approximated control law (solid line). Initial state: x0 = [−3, 0.4]T . Approximation
carried out with NP approach and ν ' 4.3 105.
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Figure 13.10. Example 2: distance d(t,x0) between the state trajectories obtained with
the nominal and the approximated controllers. Initial state: x0 = [−3, 0.4]T . Approxima-
tion carried out with NP approach and ν ' 4.3 105.
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Figure 13.11. Example 2: input courses obtained with the nominal (dashed line with
triangles) and the approximated (solid line with asterisks) controllers. Initial state:
x0 = [−3 0.4]T . Approximation carried out with NP approach and ν ' 4.3 105.

13.1.3 Example 3: nonlinear oscillator
Consider the two–dimensional nonlinear oscillator obtained from the Duffing equation
(see e.g. [94]): {

ẋ1(t) = x2(t)
ẋ2(t) = u(t)− 0.6 x2(t)− x1(t)

3 − x1(t)
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Figure 13.12. Example 2: contraction ratio ‖xt+1‖2/‖xt‖2 of the nominal state trajectory
(dashed line with triangles) and of the one obtained with the approximated control law
(solid line with asterisks). Initial state: x0 = [−3, 0.4]T . Approximation carried out with
NP approach and ν ' 4.3 105.

where the input constraint set U is:

U = {u ∈ R : |u| ≤ 5}
The following discrete time model to be used in the nominal MPC design has been ob-
tained by forward difference approximation:

xt+1 =
[

1 Ts

−Ts (1− 0.6Ts)

]
xt +

[
0
Ts

]
ut +

[
0 0
−Ts 0

]
x3

t

with sampling time Ts = 0.05 s. The nominal MPC controller κ0 is designed according
to (8.2) with horizons Np = 100, Nc = 5 and the following functions L and Φ:

L(x,u) = xT Qx + uT Ru, Φ = 0

where

Q =

[
1 0
0 1

]
, R = 0.5

The following linear state inequality constraints define the considered set X:

X = {x ∈ R2 : ‖x‖∞ ≤ 3}
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The state prediction has been performed setting ut+j|t = ut+Nc−1|t, j = Nc,...,Np − 1.
The optimization problem (8.2) employed to compute κ0(x) has been solved using a se-
quential constrained Gauss–Newton quadratic programming algorithm (see e.g. [95]),
where the underlying quadratic programs have been solved using the MatLabr function
quadprog. The maximum and mean computational times of the on–line optimization
were 6 10−1 s and 4.3 10−2 s respectively, using MATLABr 7 with an AMD Athlon(tm)
64 3200+ with 1 GB RAM.
Fig. 13.16 shows the obtained feasibility set F and the set X considered for the ap-
proximation, together with the constraint set X. The level curves of the optimal cost
functionJ∗(x) = min

U
J(U,x) are reported too: it can be noted that J∗(x) is not convex,

thus the technique proposed in [83] cannot be applied without ad–hoc modifications to
guarantee closed loop stability and constraint satisfaction properties. On the other hand,
the set techniques proposed in this thesis can be systematically employed since κ0 results
to be continuous. A set Xν of ν = 1 104 off–line computed exact control moves has
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Figure 13.13. Example 3: sets F and X (thick solid line), constraint set X (thick dotted
line) and level curves of the optimal cost function J∗(x).

been considered to derive the approximating functions. The values of x̃ ∈ Xν have been
chosen with uniform gridding over X . The following approximating functions have been
considered:
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I) Neural network approximation, obtained considering the set Xν in the design phase:

κ̂NN
NS =

7∑
i=1

αi tanh(β1
i x1 + β2

i x2 + γi) + α0

where α ∈ R8, β1 ∈ R7, β2 ∈ R7 and γ ∈ R7 are suitable weights. To satisfy
condition (9.1), function κ̂NN

NS has been then modified as:

κ̂NN(x) =





κ̂NN
NS (x) if − 5 ≤ κ̂NN

NS (x) ≤ 5
−5 if κ̂NN

NS (x) < −5
5 if κ̂NN

NS (x) > 5

II) Function κ̃LOC,NN obtained by adding to κ̂NN the optimal SM approximation of the
residue function κ0 − κ̂NN, evaluated off–line at the points x̃ ∈ Xν

III) Global optimal SM approximation κOPT of κ0, using the exact control moves com-
puted off–line at the points x̃ ∈ Xν

IV) Nearest point approximation κNP of κ0, using the exact control moves computed off–
line at the points x̃ ∈ Xν

Fig. 13.14 shows the state trajectories obtained considering the initial condition x0 =
[1, − 3.1]T , outside the state constraints. It can be noted that all the approximated con-
trollers are able to regulate the state to the origin and the related trajectories are practically
superimposed. Moreover all the approximated controllers satisfy the state constraints.
The courses of the input variable u (Fig. 13.15) show that input constraints are always
satisfied. To evaluate the performance and computational times of the considered con-
trol laws, 300 simulations have been performed starting from different initial conditions
chosen with uniform gridding over X . Each simulation lasted 600 time steps. The mean
computational time t, over all time steps of all simulations, obtained with OPT, LOC an
NP controllers is reported in Table 13.4. As a measure of control system performance, the
Euclidean distance d between the closed loop state trajectories obtained with the nominal
controller and any of the approximated ones has been considered at each time step. Then,
the mean distance d over all time steps of all simulations has been computed. The values
of d obtained with OPT, LOC an NP approximated controllers are reported in Table 13.4
too. The values obtained with the neural network approximation are d = 1 10−2 and
t = 2 10−5 s. The mean computational times of the approximated controllers may be up
to 4000 times lower than on–line optimization. The NP approximation κNP achieves the
lowest value of t, which is also independent on ν: again, this can be obtained with a suit-
able data arrangement. The neural network approximation κ̂NN also achieves a low value
of t, however its performance is poor (d = 1 10−2 ). Functions κOPT and κLOC have bet-
ter precision than κNP with the same ν value, but also higher computational times, which
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Figure 13.14. Example 3: state trajectories obtained with the nominal NMPC controller
(solid), κ̂NN (dashed), κ̃LOC,NN (dash–dotted), κOPT (dotted) and κNP (dashed, thick line).
Initial condition: x0 = [1, − 3.1]T

grow linearly with ν. Note that κ̃LOC,NN is able either to greatly improve the precision with
respect to κOPT, with the same mean computational time, or, using a lower value of ν, to
obtain a precision similar to that of κOPT, but with faster computational times. Thus, this
example shows how the local optimal SM approach is able to improve the performance
of a given preliminary approximating function, achieving either the same precision of the
global optimal approach, but with faster computation, or better precision with the same
computational times.
As regards the memory usage required by the SM approximations, about 90 KBytes, 340
KBytes and 8.4 MBytes were needed with ν = 3.5 103, ν = 1.4 104 and ν = 3.5 105

respectively, without any effort to improve the storage efficiency and using 8 Bytes for all
the values contained in the off–line computed data.

Table 13.3. Example 3: mean evaluation times and maximum trajectory distances.
κOPT κNP κLOC

t d t d t d
ν = 3.5 105 6 10−2 s 1 10−3 1 10−5 s 3 10−3 6 10−2 s 2 10−4

ν = 1.4 104 2 10−3 s 4 10−3 1 10−5 s 1.5 10−2 2 10−3 s 6 10−4

ν = 3.5 103 6 10−4 s 8 10−3 1 10−5 s 3 10−2 6 10−4 s 6 10−3
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Figure 13.15. Example 3: courses of input variable u obtained with the nominal NMPC
controller (solid), κ̂NN (dashed), κ̃LOC,NN (dash–dotted), κOPT (dotted) and κNP (dashed,
thick line). Initial condition: x0 = [1, − 3.1]T

13.1.4 Example 4: nonlinear system with unstable equilibrium
Consider the following two–dimensional continuous–time nonlinear system (see e.g. [96])





ẋ1(t) = x2(t) +
(1 + x1(t))

2
u(t)

ẋ2(t) = x1(t) +
(1− 4x2(t))

2
u(t)

(13.2)

whose origin is an unstable equilibrium point. The input constraint set U is:

U = {u ∈ R : |u| ≤ 4}
The following discrete time model, to be used in the nominal MPC design, has been
obtained by forward difference approximation:

xt+1 =

[
1 Ts

Ts 1

]
xt +

Ts

2

([
1
1

]
+

[
1 0
0 −4

]
xt

)
ut

with sampling time Ts = 0.1 s. The nominal NMPC controller κ0 is designed according
to (8.2) with horizons Np = 30, Nc = 30 and the following functions L and Φ:

L(x,u) = xT Qx + uT Ru, Φ = 0
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where

Q =

[
0.5 0
0 0.5

]
, R = 0.5

The following linear state inequality constraints define the considered set X:

X = {x ∈ R2 : ‖x‖∞ ≤ 3}

Moreover, the following terminal constraint set (see e.g. [45]) has been included to en-
force stability of the origin of the nominal discrete–time model:

Xf = {x ∈ R2 : ‖x‖∞ ≤ 0.1}

The origin of the closed–loop system with the linear control law ut = −KLQRxt, KLQR =
[2.1, 2.1] is asymptotically stable for any initial state x0 ∈ Xf.
The optimization problem (8.2), whose solution defines the control law κ0(x), has been
solved using a sequential constrained Gauss–Newton quadratic programming algorithm
(see e.g. [95]), where the underlying quadratic programs have been solved using the
MatLabr function quadprog. The mean computational time of the on–line optimiza-
tion was between 1 s and 8 10−2 s (depending on the actual state value xt) with a mean
value of 1.7 10−1 s, using MATLABr 7 with an Intelr CoreTM2 Duo @2.4 GHz proces-
sor and 2 GB RAM.
Fig. 13.16 shows the set X considered for the approximation, together with the constraint
set X. The level curves of the optimal cost function J∗(x) = min

U
J(U,x) are reported too.

The following approximating functions have been considered:

I) Optimal SM approximation κOPT

II) Nearest point approximation κNP

III) Neighborhood SM approximation κNB, with partitions Xj computed employing a
uniform grid on the set X

IV) Linear interpolation κLIN, with partitions Xj computed applying the Delaunay trian-
gulation (see e.g. [97]) to the set Xν

Each of the considered approximations has been computed using different values of ν.
An example of simulation results obtained with ν = 2.5 103 and initial condition x(0) =
[2.1,−17]T is reported in Figs. 13.16 and 13.17, in terms of closed–loop state trajectories.
It can be noted that the closed–loop trajectories are practically superimposed, except for
a quite small neighborhood of the origin (see Fig. 13.17). In particular, it can be noted
that control laws κ0 and κLIN obtain no steady–state offset, as it can be expected since in
the neighborhood of the origin both these controllers are equivalent to a stabilizing linear
state feedback law. On the contrary, the SM optimal and neighborhood approximations
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Figure 13.16. Example 4: set X , constraint set X (thick dotted line) and level curves of
the optimal cost function J∗(x) (thick solid lines). Closed loop state trajectories obtained
with controllers κ0 (solid), κOPT (dotted), κLIN (dash–dot) and κNB (dashed). Initial state
x(0) = [2.1, − 17]T , approximations computed using ν = 2.5 103 points.

make the system state converge to an equilibrium point close to the origin. Such a be-
haviour, which is confirmed by the results of extensive simulation tests reported in Table
13.6 below, is due to the fact that the origin is an unstable equilibrium point and that
both κOPT and κNB are equal to zero in its proximity (provided that the equilibrium point
x̃ = [0, 0]T , ũ = 0 is included in the off–line computed data set Xν). The regulation pre-
cision obtained with the OPT and NB laws can be improved by using a higher number of
off–line computed points near the origin, making the state converge to an arbitrary small
neighborhood of [0, 0]T (see e.g. [59]). Alternatively, a dual–mode controller could be
used, switching to a linear stabilizing state feedback control law when the system state
enters the related reachable set (or a subset of it).
To evaluate the performance and computational times of the considered control laws, 500
simulations have been performed starting from different initial conditions, chosen with
uniform random gridding over X . Each simulation lasted 300 time steps (i.e. 30 simu-
lation seconds). The mean computational times t, over all time steps of all simulations,
obtained with each controller, are reported in Table 13.4. As a measure of control system
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Figure 13.17. Example 4: closed loop state trajectories near the origin, obtained with
controllers κ0 (solid), κOPT (dotted), κLIN (dash–dot) and κNB (dashed). Initial state
x(0) = [2.1, − 17]T , approximations computed using ν = 2.5 103 points.

performance, the relative Euclidean distance dj(t), j = 1, . . . ,500 has been considered:

dj(t) =
‖φ0,j(t)− φj(t)‖2

‖φ0,j(t)‖2

where φ0,j(t) and φj(t) are the closed–loop state trajectories obtained in the j–th simu-
lation with the nominal controller and the approximated one respectively, given the same
initial state xj(0). Then, the following definition of transient interval has been considered:

tTI,j = arg min
t

t : ‖φj(t)‖2 ≤ 0.1 ‖xj(0)‖2

and the mean relative distance d over the time intervals [0,tTI,j] of all the simulations has
been computed:

d =
1

500

500∑
j=1


 1

tTI,j

tTI,j∫

0

dj(t) dt




Moreover, as a measure of regulation precision, the mean value dOR of the norm of the
state trajectory ‖φj(t)‖2, j = 1, . . . ,500 over the last 2 seconds of all the simulations has
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been also evaluated:

dOR =
1

500

500∑
j=1


1

2

30∫

28

‖φj(t)‖2 dt




The values of d and dOR obtained with each approximated controller are given in Tables
13.5 and 13.6 respectively. Finally, Table 13.7 shows the memory required by each of the
approximated control laws for each value of ν. Indeed, the reported computational times
and memory requirements are intended to be used to compare the different control laws in
relative terms only. No memory optimization effort has been done on the employed data
structures and all the variables have been stored using 4–Byte floating point representa-
tion.
From Table 13.4 it can be noted that the NP approximation κNP achieves the lowest com-
putational values, however its performance (Table 13.5) is also the worst (though quite
close to those of OPT and NB approximations) and the memory occupation is high (only
LIN technique has higher memory requirements). Function κOPT has better precision and
the lowest memory usage, but also the highest computational times. The best performance
is obtained for any ν value by the linear interpolation κLIN, at the cost of higher computa-
tional time (but still about 250–500 times lower than on–line optimization) and memory
usage. In particular, with ν = 2.5 103 points the linear interpolation achieves better per-
formance than the other techniques in most cases, together with asymptotic stability of
the origin. Note that the optimal SM approximation has worse performance than LIN
technique: this does not contradict the theoretical results since the OPT approximation
guarantees the lowest worst case error, which does not imply that the average precision in
practice is the best. This is also the reason why in some cases (see Table 13.5 for the case
ν = 2.5 103) the NB technique (which employs only a subset of the data considered by the
OPT approximation) has better average performance than OPT. In fact, the SM neighbor-
hood approximation has performance close to those of OPT and quite fast computational
times (slower than the NP technique only, see Table 13.4). This is also put into evidence
by the fact that in most cases (93% with ν = 2.5 103 up to 96% with ν = 2.5 104) the
input κNB(x) = κOPT(x) given the same x value.
Thus, the presented example shows how both LIN and NB techniques can be tuned to
achieve a suitable tradeoff between precision, on–line evaluation time, memory usage
and off–line computation, providing more degrees of freedom in the control design than
the previously introduced OPT and NP approaches.
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Table 13.4. Example 4: mean computational times.
ν κOPT κNP κNB κLIN

2.5 103 3.3 10−4 9.0 10−5 1.3 10−4 3.8 10−4

4.9 103 1.0 10−3 1.0 10−4 1.5 10−4 5.9 10−4

9.7 103 2.0 10−3 1.1 10−4 1.7 10−4 8.1 10−4

2.5 104 5.0 10−3 7.2 10−5 1.9 10−4 7.0 10−4

Table 13.5. Example 4: mean trajectory distance d.
ν κOPT κNP κNB κLIN

2.5 103 7.8% 8.6% 5.9% 1.6%
4.9 103 2.5% 3.0% 2.7% 0.7%
9.7 103 1.5% 1.9% 1.5% 0.2%
2.5 104 1.1% 1.7% 1.3% 0.1%

13.2 Fast NMPC for vehicle stability control using a rear
active differential

In this Section, as a further example a NMPC approach to improve vehicle yaw rate
dynamics by means of a rear active differential is introduced. In particular, the use of
nonlinear predictive controllers is investigated to show their effectiveness in the vehicle
stability control context. In order to allow the online implementation of the designed pre-
dictive control law, the Nearest Point approach is adopted. Enhancements on stability in
demanding conditions such as µ–split braking and damping properties in impulsive ma-
neuvers are shown through simulation results performed on an accurate nonlinear model
of the vehicle. Improvements over a well assessed approach which employs an enhanced
IMC structure to handle input constraints are obtained too.
This application example shows how the presented techniques for efficient NMPC can be
effectively employed in the case of reference tracking problems; moreover, the issue of

Table 13.6. Example 4: mean regulation precision dOR.
ν κOPT κNP κNB κLIN

2.5 103 6.0 10−3 6.0 10−3 6.0 10−3 2 10−13

4.9 103 4.4 10−9 4.4 10−9 4.4 10−9 2 10−13

9.7 103 4.4 10−9 4.4 10−9 4.4 10−9 2 10−13

2.5 104 4.4 10−9 4.4 10−9 4.4 10−9 2 10−13
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Table 13.7. Example 4: memory usage (KB)
ν κOPT κNP κNB κLIN

2.5 103 0.6 102 0.9 102 0.7 102 3.0 102

4.9 103 1.2 102 1.6 102 1.3 102 7.0 102

9.7 103 2.3 102 3.6 102 2.8 102 1.5 103

2.5 104 6.0 102 1.3 103 7.5 102 4.3 103

regressor scaling is also addressed.

13.2.1 Problem description
Vehicle yaw dynamics may show unexpected dangerous behavior in presence of unusual
external conditions such as lateral wind force, different left–right side friction coefficients
and steering steps needed to avoid obstacles. Moreover, in standard turning manoeuvres
understeering phenomena may deteriorate handling performances in manual driving and
cause uncomfortable feelings to the human driver. Vehicle active control systems aim to
enhance driving comfort characteristics ensuring stability in critical situations. Several so-
lutions to active chassis control have appeared in the last years. All the proposed strategies
modify the vehicle dynamics by means of suitable yaw moments that can be generated in
different ways (see e.g. [98], [99], [100], [101], [102], [103]). In particular, the action
of active braking systems is employed in Anti Lock Braking System, Vehicle Dynamic
Control and Electronic Stability Program strategies; an electronic controlled superposi-
tion of an angle to the steering wheel is used in Front Active Steering methodologies;
unsymmetrical traction force distributions for left–right sides of the rear axle are imposed
by means of active differential devices. Common to all such solutions is the fact that they
are able to generate limited values of the yaw moment. The immediate consequence is
that the input variable may saturate and this could deteriorate the control performances.
Moreover, good damping properties and vehicle safety (i.e. stability) performance can be
considered as well by imposing suitable constraints on the on the yaw rate ψ̇(t) and on
the sideslip angle β(t) values as described in [104]. Therefore, considering the presence
of such constraints, the employment of NMPC appears to be an appropriate approach to
solve the problem. Indeed, the sampling times required for such kind of application may
not allow to perform the NMPC optimization problem online. Nevertheless, predictive
control has been successfully employed in vehicle lateral and stability control by means
of suitable solutions aimed at improving the online computational times. In particular,
in [105], predictive control techniques have been used in active steering control for an
autonomous vehicle where online linearization of the vehicle model gave rise to an effec-
tive suboptimal solution which allows the online implementation. Moreover, in [106] an
interesting contribution to the problem of control allocation in yaw stabilization has been
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introduced by means of nonlinear multiparametric programming where an approximate
solution obtained by means of a piecewise linear function is used for the online imple-
mentation of the controller. Here, the problem of efficient MPC implementation is solved
using the NP approach presented in Section 12.1. In order to show in a realistic way the
effectiveness of the proposed control approach, extensive simulation tests in demanding
driving situations are performed using a detailed nonlinear 14 degrees of freedom vehicle
model. Finally, improvements over a well assessed approach which employ an enhanced
IMC structure to handle input constraints are shown too.

13.2.2 Vehicle modeling and control requirements
Vehicle dynamics can be described using the following single track model (see e.g. [107]):

mv(t)β̇(t) + mv(t)ψ̇(t) = Fyf (t) + Fyr(t)

Jzψ̈(t) = aFyf (t)− bFyr(t) + Mz(t)
(13.3)

In model (13.3) the inputs are the yaw moment Mz and the front steering angle δ. More-
over, m is the vehicle mass, Jz is the moment of inertia around the vertical axis, β is the
sideslip angle, ψ is the yaw angle and v is the vehicle speed, a and b are the distances
between the center of gravity and the front and rear axles respectively. Fyf and Fyr are
the front and rear tyre lateral forces which can be expressed as nonlinear functions of the
other variables (see [108] and [103] for more details):

Fyf = Fyf (β,ψ̇,v,δ)

Fyr = Fyr(β,ψ̇,v)
(13.4)

Vehicle dynamics can be modified by means of suitable yaw moments generated by ex-
ploiting appropriate combinations of longitudinal and/or lateral tyre forces. In this paper,
the required yaw moment is supposed to be generated by a Rear Active Differential (RAD)
whose clutches are actuated by means of electric valves driven by the current i(t) origi-
nated by the control algorithm (see [103] for a detailed description of such device). As a
first approximation, the actuator behavior can be described by the model:

Mz(t) = KAi(t− ϑ) (13.5)

where KA and ϑ are the actuator gain and delay respectively. Equations (13.3), (13.4) and
(13.5) can be rearranged in the state equation form:

[
ψ̈(t)

β̇(t)

]
= f(ψ̇(t),β(t),δ(t),i(t− ϑ)) (13.6)

The input variable i(t) is employed for control purposes, while δ(t)) is not manipulable
and describes the driver’s maneuvering intention. The control requirements in terms of
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understeer characteristics improvements can be taken into account by a suitable choice of
the reference signal ψ̇ref(t) generated by means of a nonlinear static map

ψ̇ref(t) = M(δ(t),v(t)) (13.7)

which uses the current values of the steering angle and of the vehicle speed as inputs.
Details on the computation of the map M(·) can be found in [103]. In order to take into
account such reference following requirements, the control strategy can be designed by
minimizing the amount of the error variable e(t):

e(t) = ψ̇ref(t)− ψ̇(t)

Moreover, good damping properties and vehicle safety (i.e. stability) performance can be
considered as well by imposing suitable constraints on the on the yaw rate ψ̇(t) and on the
sideslip angle β(t) values as described in [104]. However, the amount of the yaw moment
generated by the employed active device is subject to its physical limits. In particular,
the considered device has an input current limitation of ± 1 A which correspond to the
range of allowed yaw moment ± 2500 Nm that can be mechanically generated (see [109]
and [110]). Thus, saturation aspects of the control input (i.e. the actuator current i(t))
have to be carefully taken into account in the control design. Therefore, considering the
presence of state and input constraints, the employment of NMPC techniques appears to
be an appropriate approach to solve the problem.

13.2.3 NMPC strategy for yaw control
In this Section it is shown how Model Predictive Control strategies (see e.g. [45]) can
be effectively employed in vehicle active control. The control move computation is per-
formed at discrete time instants kTs, k ∈ N, defined by the sampling period Ts and on
the basis of the following state equations obtained by discretization of (13.6) by means of
e.g. forward difference approximation (for simplicity, the notation k + j , (k + j)Ts is
used): [

ψ̇k+1

βk+1

]
= f̃(ψ̇k,βk,δk,ik−r) (13.8)

where r is the input delay of the current i which depends on the value of the actuator
delay ϑ. Thus, at each sampling time k, the measured values of the state ψ̇k,βk, supposed
to be available, together with the requested value of the yaw rate reference ψ̇ref,k, and of
the input variables δk,ik−1, . . . ,ik−r are used to compute the control move through the
optimization of the following performance index:

J =

Np−1∑

k=0

e2
k+j+1|k + ρi2k+j|k (13.9)
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where Np ∈ N is the prediction horizon, ek+j|k is jth step ahead prediction of the error
variable obtained as

ek+j|k , ψ̇ref,k − ψ̇k+j|k

The value of ψ̇ref,k is computed using the current values of δk and vk (see (13.7)). The
predicted yaw rate ψ̇k+j|k is obtained via the state equation (13.8), starting from the “initial
condition”: [

ψ̇k

βk

]

and using the following values of the inputs i and δ:
[

δk|k = δk+1|k = . . . = δk+Np−1|k
ik−r, . . . ,ik−1,ik|k, . . . ,ik+Nc−1|k, . . . ,ik+Np−1|k

]

where Nc ≤ Np is the control horizon and the assumption ik+j|k = ik+Nc−1|k,Nc ≤ j ≤
Np − 1 is made. Thus, since during the prediction horizon the value of the steering angle
δ is kept constant at the value δk|k measured at time k, the optimization of the index
(13.9) is performed with respect to the variables I = [ik|k, . . . ,ik+Nc−1|k]. Therefore the
performance index J depends on the vector wk ∈ R4+r of the measured variables:

wk ,
[
ψ̇k,βk,δk,vk,ik−r, . . . ,ik−1

]T

(13.10)

Thus the predictive control law is computed using the following receding horizon strategy:

1. At time instant k, get wk.

2. Solve the optimization problem:

min
I

J(wk) (13.11a)

subject to

I ∈ I =
{
ik+j|k : |ik+j|k| ≤ ī > 0, j ∈ [0,Nc − 1]

}
(13.11b)

|βk+j|k| ≤ β̄ > 0, j ∈ [1,Np − 1] (13.11c)

3. Apply the first element of the solution sequence I as the actual control action ik =
ik|k.

4. Repeat the whole procedure at the next sampling time k + 1.

Note that no constraints have been imposed on ψ̇ as their limitation on the basis of criteria
similar to the ones introduced in [104] have been implicitly taken into account in the ψ̇ref

computation (see [103]). Besides, the constraint on β accounts for vehicle directional
stability.
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The predictive controller obtained by the action of current ik results to be a nonlinear
static function of the variable wk defined in (13.10):

ik = κ0(wk) (13.12)

For a given wk, the value of the function κ0(wk) is computed by solving at each sampling
time k the constrained optimization problem (13.11). However, such online solution of
the optimization problem cannot be performed at the sampling period required for this ap-
plication, which is of the order of 0.01 s. To overcome this problem the NP approximation
κNP(wk) ≈ κ0 is employed here, as discussed in the next Section.

13.2.4 Fast NMPC implementation
Prior information

The a priori knowledge on the nominal control law κ0 is now introduced. The approxi-
mating function κNP is computed over a compact subset W ⊂ R4+r of the domain of the
exact function κ0. Inside W , a finite number ν of points w̃`,` = 1, . . . ,ν < ∞ is suitably
chosen, defining the set: Wν = {w̃` ∈ W , ` = 1, . . . ,ν}. For each value of w̃ ∈ Wν , the
corresponding value ĩ = κ0(w̃) is computed by solving off–line the optimization problem
(13.11), so that:

ĩ = κ0(w̃), ∀w̃ ∈ Wν (13.13)

Such values of w̃,̃i are stored to be used for the online computation of κNP. The set Wν is
supposed to be chosen such that the following property holds:

lim
ν→∞

dH(W ,Wν) = 0 (13.14)

where dH(W ,Wν) is defined as:

dH(W ,Wν) = sup
w∈W

inf
w̃∈Wν

(‖w − w̃‖2) (13.15)

Since both W and I are compact, the following Lipschitz continuity property holds:

‖κ0(w1)− κ0(w2)‖2 ≤ Lκ0‖w1 − w2‖2, ∀w1, w2 ∈ W (13.16)

All this prior information can be summarized by concluding that κ0 belongs to the fol-
lowing Feasible Function Set (FFS):

κ0 ∈ FFS = {κ ∈ ALκ0 : κ(w̃) = ĩ, ∀w̃ ∈ Wν} (13.17)

where ALκ0 is the set of all continuous functions κ : W → I, such that (13.16) holds.
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Nearest Point approximation

The approximating function κNP is computed as follows. For any w ∈ W , denote with
w̃NP a value such that:

w̃NP ∈ Wν : ‖w̃NP − w‖2 = min
w̃∈Wν

‖w̃ − w‖2 (13.18)

Then, the NP approximation κNP(x) is defined as:

κNP(w) = κ0(w̃NP) (13.19)

As showed in Section 12.1, such approximation has the following properties:

I) the input constraints are always satisfied:

κNP(w) ∈ I, ∀w ∈ W (13.20)

II) for a given ν, a bound ζNP(ν) on the pointwise approximation error can be computed:

‖κ0(w)− κNP(w)‖2 ≤ ζNP = Lκ0 dH(W ,Wν), ∀w ∈ W (13.21)

III) ζNP(ν) is convergent to zero:
lim

ν→∞
ζNP = 0 (13.22)

As regards the computation of the Lipschitz constant Lκ0 , which is needed to compute the
approximation error bound ζNP, an estimate L̂κ0 can be derived using (9.6).

Variable scaling

In the computation of the NP control law (13.18), (13.19) , the Euclidean norm ‖w̃ −
w‖2 =

√
(w̃ − w)T (w̃ − w) is considered to measure the distance between w̃ and w.

In [57], such choice gives good results on a numerical example. However, in practical
applications it is usually needed to scale the variables w to adapt to the properties of data.
This is obtained using a weighted Euclidean norm:

‖w̃ − w‖M
2 =

√
(w̃ − w)T MT M(w̃ − w) (13.23)

where
M = diag(mi), i = 1, . . . ,4 + r (13.24)

and mi ∈ (0,1) :
4+r∑
i=1

mi = 1 are suitable scalar weights. In [86] the issue of choosing

the values of mi is considered when the function to be approximated is differentiable. A
similar approach is now presented in the case of Lipschitz continuous functions. For the
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sake of notation’s simplicity, consider κ0(w) : R4+r → R.
Due to the continuity assumption, function κ0 is Lipschitz continuous with respect to each
component wi of w, i = 1, . . . ,n. Thus, for each value of w ∈ W there exist Lipschitz
constants Lκ0,i(w), i = 1, . . . ,4 + r such that:

|κ0([v1,wj 6=i])− κ0([v2,wj 6=i])| ≤ Lκ0,i(w)|v1 − v2|, ∀v1,v2 ∈ Vi

where Vi = {v : [v,wj 6=i] ∈ W}. Consider now the constants:

Γi = sup
w∈W

Lκ0,i(w),i = 1, . . . ,4 + r

Estimates of Γi can be computed e.g. by performing a preliminary differentiable approx-
imation κ̂ ≈ κ0 (e.g. linear, neural networks. . . ) and evaluating:

Γi ' sup
w∈W

|∂κ̂(w)/∂wi|

Then, the values of mi can be computed as:

mi =
Γi

4+r∑
i=1

Γi

(13.25)

equation (13.25) is derived applying normalization to the values given by Lemma 2 in
[86].

Design procedure

The overall design procedure for the fast NMPC approach proposed in this paper can be
resumed as follows:

1. Design the nominal NMPC control law according to (13.11).

2. Choose the setW where the approximated control law is defined and collect the val-
ues w̃j, ĩj, j = 1, . . . ,ν (13.13), e.g. by performing simulations of suitably chosen
maneuvers using the closed loop vehicle with the nominal NMPC controller.

3. Derive a preliminary smooth approximated control law κ̂ ≈ κ0 using some identi-
fication method and evaluate the weight matrix M (13.24) using (13.25).

4. Estimate the Lipschitz constant Lκ0 using (9.6), considering the scaled values ṽj =
Mw̃j, j = 1, . . . ,ν.

5. Evaluate the guaranteed approximation error ζNP(ν) using (13.21), computing the
Hausdorff distance dH(W ,Wν) (13.15) with the weighted Euclidean norm ‖ · ‖M

2

(13.23). Eventually tune the weight matrix M and/or increase the number ν of
off–line computed values to reduce ζNP(ν).
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6. Implement on–line the NP approximated control law using (13.18) and (13.19) with
the weighted Euclidean norm ‖ · ‖M

2 (13.23).

13.2.5 Simulation results
The nominal predictive controller κ0 has been designed using model (13.3), (13.4) with
the following nominal parameter values:
m = 1715 kg Jz = 2700 kgm2 a = 1.07 m b = 1.47 m
ϑA = 20 ms KA = 2500 Nm/A
To be used in the optimization algorithm, the vehicle model has been discretized using
forward difference approximation, with sampling time Ts = 0.01 s. Therefore, since the
nominal actuator delay value is ϑ = 20ms = 2Ts, at the generic time step k the past input
values ik−1, ik−2 (i.e. the number r of the current delay is 2) have to be used to compute
the predicted vehicle behavior. The weight ρ in cost function (13.9) has been chosen as
ρ = 10−6, and the employed state and input constraints are β = 5◦ and i = 1 A. The cho-
sen prediction and control horizons are Np = 100 and Nc = 5 respectively. The nominal
control move computation has been performed using a sequential constrained Gauss–
Newton quadratic programming algorithm (see e.g. [95]), where the underlying quadratic
programs have been solved using the MatLabr optimization function quadprog. Thus,
the nominal control law at sampling time k results to be a static function of the variables
wk = [ψ̇k βk δk vk ik−1 ik−2]

T ∈ R6. Note that the reference yaw rate ψ̇ref,k is not explic-
itly considered in the regressor vector wk, since it is computed using a static function of
δk and vk (see [103]), which are already included in wk. The values of w̃, ĩ in (13.13) have
been computed performing simulations involving an extensive set of handwheel steps and
sinusoids maneuvers. In this way, a number ν = 5.5 105 of values was collected in the
set:

W =





w :




−0.5
−0.1
−0.1
22
−1
−1



¹ w ¹




0.5
0.1
0.1
33
1
1








where the symbol ¹ indicates element–wise inequalities.

The weights mi, i = 1, . . . ,6,
6∑

i=1

mi = 1 (13.25) for the NP control approximation have

been initially computed on the basis of a preliminary linear approximation of κ0 (see
[86]) and they have been tuned through simulations. The chosen values are m1÷6 =
[0.107, 0.539, 0.352, 1.9 · 10−7, 2.6 · 10−4, 2.6 · 10−4].
In order to test the performances obtained by the considered yaw control approach, sim-
ulations have been performed using a detailed nonlinear 14 degrees of freedom Simulink
model, which gives an accurate description of the vehicle dynamics as compared to actual
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measurements and includes nonlinear suspension, steer and tyre characteristics, obtained
on the basis of measurements on the real vehicle. The following open loop (i.e. without
driver’s feedback) maneuvers have been chosen to test the control effectiveness:
- steer reversal test with handwheel angle of 50◦ performed at 100 km/h, with a steering
wheel speed of 400◦/s. This test aims to evaluate the controlled car transient and steady
state performances: the employed handwheel course is showed in Fig. 13.18.
- µ−−split braking maneuver performed at 100 km/h with dry road on one side and icy
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Figure 13.18. Handwheel angle course for the 50◦ steer reversal test maneuver.

road on the other, with braking pedal input corresponding to a deceleration value of 0.5
g on dry road. The objective of this test is to evaluate the system response in presence
of strong disturbances. Note that the µ–split maneuver implies a differential left–right
change in the tyre–road friction coefficients, which was not taken into account in NMPC
design, since the maneuvers considered in the off–line computation of the control moves
were performed with a single track model.
- steering wheel frequency sweep performed at 90 km/h in the frequency range 0–7 Hz
with steering wheel angle amplitude of 30◦.
The performance obtained with the NP approximation technique have been compared to
those of the uncontrolled vehicle, of the nominal MPC control law and of the enhanced
IMC structure proposed in [103] for the same application, which proved to give quite
good results.
The results of the 50◦ steer reversal test are reported in Fig. 13.19–13.22. In Fig. 13.19
it can be noted that the approximated MPC controller (solid line) and the nominal one
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(dashed–dotted) show a very similar behavior, with only a slight difference in the second
part of the maneuver (see Fig. 13.19 at about t = 6 s). Moreover, the transient per-
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Figure 13.19. 50◦ steer reversal test at 100 km/h. Comparison between the reference
(thin solid line) vehicle yaw rate course and those obtained with the nominal NMPC
(dash–dotted) and NP approximation (solid) controlled vehicles.

formances obtained with the proposed fast NMPC technique are better than those of the
IMC controller (dashed line, see Fig. 13.20 at t = 1 s, t = 4 s and t = 7 s), which already
showed very good performance with respect to the uncontrolled vehicle (Fig. 13.20, dot-
ted line). The steady state yaw rate reference is reached and, according to the reference
map (see e.g. [103]), it is higher than the uncontrolled vehicle yaw rate, thus improv-
ing car maneuverability. The obtained sideslip angle β(t) is kept inside the considered
constraint (see Fig. 13.21, solid line), as well as the input variable u (Fig. 13.22, solid
line). Note that some chattering of the input variable occurs with the NP approximated
control law: such phenomenon can be mitigated by increasing the number ν of off–line
computed control moves (see [57]), at the expense of higher memory usage. Another pos-
sibility would be the use of a “local” set membership approximation, as described in [86],
which can practically lead to good approximation accuracy with low values of ν. Indeed,
the choice of the regressor values is a key point in the approximated controller design,
especially if the regressor dimension is relatively high, like in the considered application.
A higher value of ν leads to better accuracy, but also to higher memory requirements and
computational costs. With the employed NP approximation, the on–line computational
time can be greatly reduced by suitably arranging the collected data and, in the case of
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Figure 13.20. 50◦ steer reversal test at 100 km/h. Comparison between the reference
(thin solid line) vehicle yaw rate course and those obtained with the uncontrolled (dotted)
and the IMC (dashed) and NP approximation (solid) controlled vehicles.

uniform gridding of W , the computational burden is independent on ν (see [57] for de-
tails). However, uniform gridding of W may lead to excessively high ν values and is not
adopted in this application. The obtained mean computational time for the approximated
control law is 1 ms, using MatLabr 7 under MS Windows XP and an Intelr Core(tm)2
Duo T7700@2.4 GHz processor with 2 GB RAM. On the same machine, the mean com-
putational time for the online optimization is 35 ms.
As regards the considered µ–split braking maneuver, Fig. 13.23 shows the vehicle trajec-
tories obtained in the uncontrolled case (black), with the IMC controller (white) and with
the NP approximated controller (gray). It can be noted that the NP approximated predic-
tive control law achieves the best performance, since the effects of the disturbance on the
vehicle path is lower than the other cases, while the uncontrolled vehicle is not stable.
Finally, the steering wheel frequency sweep maneuver aims to evaluate the improvement
achieved by the controlled vehicle with NP approximation in terms of resonance peak
reduction and bandwidth increase. Fig. 13.24 shows the frequency course of the transfer
ratio:

Tm(ω) =
ψ̇(ω)

ψ̇(0)

209



13 – Examples

0 2 4 6 8
−3

−2

−1

0

1

2

3

  Time (s)

  S
id

es
lip

 a
ng

le
 β

 (
ra

d)

Figure 13.21. 50◦ steer reversal test at 100 km/h. Comparison between the sideslip angle
courses obtained with the uncontrolled (dotted) and the IMC (dashed) nominal NMPC
(dash–dotted) and NP approximation (solid) controlled vehicles.

where ψ̇(ω) is the steady state yaw rate amplitude obtained in presence of the sinusoidal
30◦ handwheel input at frequency ω, and ψ̇(0) is the steady state yaw rate in presence of
a constant handwheel input of 30◦. It can be noted that the NP approximated controlled
vehicle has a slightly lower resonance peak with respect to the case of IMC control, and
a higher bandwidth. Note that the enhanced IMC controller of [103] also employs a
feedforward control contribution to enhance the system transient response, which is not
needed in the case of NMPC.

13.2.6 Conclusions

A Model Predictive Control approach to vehicle yaw control has been introduced. In
the proposed approach the predictive controller has been realized by means of a Nearest
Point approximation using a finite number of exact offline solutions. Simulation results
performed on an accurate model of the considered vehicle demonstrate the effectiveness
of the considered approach. In particular, it has been shown that a highly damped be-
haviour in reversal steer maneuvers has been obtained; stability is guaranteed in presence
of demanding driving conditions like µ–split braking and resonance peak has been sig-
nificantly reduced in the frequency response. Finally, improvements over a well assessed
approach which employ an enhanced IMC structure to handle input constraints have been
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Figure 13.22. 50◦ steer reversal test at 100 km/h. Comparison between the
input variable u obtained with the IMC (dashed), nominal NMPC (dash–dotted)
and NP approximation (solid).
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Figure 13.23. µ–split braking maneuver at 100 km/h. Comparison between the tra-
jectories obtained with the uncontrolled vehicle (black) and the IMC (white) and NP
approximated (gray) controlled ones.

shown too.
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Figure 13.24. Frequency response obtained from the handwheel sweep maneuver at 90
km/h, with handwheel amplitude of 30◦. Comparison between the uncontrolled vehicle
(dotted) and the IMC (dashed) and approximated NMPC (solid) controlled ones.
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Chapter 14

Concluding remarks

This Chapter summarizes the main contributions of Part II of this dissertation and indi-
cates possible further research directions.

14.1 Contributions

The second Part of this dissertation focused on the use of approximated NMPC laws to
avoid on–line optimization and allow one to employ NMPC also with systems with “fast”
dynamics. The approximation is performed on the basis of the prior information given by
a finite number ν of exact control moves computed off–line and stored. The main given
contributions are the following:

I) analysis of the closed loop properties of stability, constraint satisfaction and per-
formance degradation obtained using an approximated NMPC law (Chapter
9).
The main theoretical result states that if the approximated control law enjoys three
key properties, then guaranteed closed loop stability and performance can be ob-
tained. Namely, such properties are satisfaction of input constraints, boundedness
of the pointwise approximation error and its convergence to an arbitrary small value,
as ν increases. The obtained guaranteed closed loop properties regard the bound-
edness and convergency of the controlled state trajectories, satisfaction of state
constraints and a bound on the maximum distance between the closed loop state
trajectories obtained with the exact and with the approximated control laws.

II) Analysis of the guaranteed accuracy obtained by a generic approximating func-
tion (Chapter 10).
A general framework has been considered, where the approximation is obtained
with any technique (e.g. polynomial curve fitting, interpolation, neural networks,
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etc.), and sufficient conditions have been derived for the approximated controller to
satisfy the above–mentioned key properties.

III) Derivation of novel approaches to approximate a given NMPC law (Chapters
11–13).
Five different approaches have been described, which satisfy the considered key
properties and can be therefore employed to obtain approximating functions with
guaranteed closed loop stability and performance. Such approaches are able to
achieve different tradeoffs between accuracy, computational efficiency, memory us-
age and off–line computational effort (required to derive the approximating func-
tion). Several numerical examples have been also given, together with an applica-
tion example in the field of vehicle yaw control.

14.2 Directions for future research
Some possible future developments of the presented work regard the choice of the off–line
computed control moves, employed to compute the approximating function, the use of
control approaches that mix on–line optimization and function approximation techniques
and finally further improvements of the optimal SM approaches described in Chapter 11.

I) Optimal choice of the off–line computed data.
The results given in this dissertation do not concern how the off–line computed
data are chosen, i.e. the choice of the set Xν = {x̃k, k = 1, . . . ,ν}, apart from the
assumption (8.10). An interesting research direction is to find out an optimal choice
of Xν , which minimizes the number of off–line computed control moves to obtain
a given accuracy level. It would be also of interest to develop an algorithm able
to increase ν iteratively to improve the obtained guaranteed accuracy, choosing the
“new” data in an optimal way.

II) Generalization of the theoretical results.
The stability and performance results presented in this dissertation assume conti-
nuity of the MPC control law over the compact subset where the approximation
is carried out. Though sufficient conditions that guarantee satisfaction of this as-
sumption exists [64], they are in general difficult to verify with nonlinear systems.
Thus, removing the continuity assumption would lead to more general and powerful
results.

III) Mixed on–line/off–line approximation approaches.
In order to add further degrees of freedom in the design of an approximated NMPC
law achieving a tradeoff between accuracy and memory usage, it would be inter-
esting to mix on–line optimization (using a simplified system model and/or shorter
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control horizons) and off–line NMPC approximation. In this context, the local op-
timal SM approach seems to be well suited to be employed together with a simple
on–line optimization procedure.

IV) Improvements of the optimal SM approaches.
The optimal SM approaches described in Chapter 11 give the minimal worst–case
accuracy, according to the considered prior information, however their computa-
tional time grows linearly with ν, since all of the off–line computed data are con-
sidered for their evaluation. Indeed, for a given state value x, the values of the
optimal bounds (whose computation is required to obtain the optimal SM approxi-
mation) depend only on few of the memorized data.
An interesting research direction is the improvement of the evaluation efficiency of
the optimal SM approaches, via the off–line partitioning of the set X , over which
the approximation is carried out. Then, for each of such partitions, a subset of the
overall memorized data can be computed, containing only the off–line computed
data which give useful information for the computation of the optimal bounds. This
way, the on–line evaluation would firstly require a search for the active partition and
then the computation of the optimal bounds, using the reduced number of memo-
rized data related to that partition. The obtained guaranteed accuracy would be
the same as the optimal approaches described in this thesis, with improved on–line
efficiency (similar to that of the NB approximation of Section 12.3)
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Appendix A

Regional definitions and country
groupings

The regional definitions employed in Part I of this dissertation correspond to those of [1].
In particular, six basic groups are considered (see Figure A.1), with a further subdivision
of the OECD group:

Figure A.1. Map of the six basic country groupings. Image taken from [2]

1. OECD
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A – Regional definitions and country groupings

OECD North America: Canada, Mexico and the United States.

OECD Europe: Austria, Belgium, the Czech Republic, Denmark, Finland, France,
Germany, Greece, Hungary, Iceland, Ireland, Italy, Luxembourg, the Nether-
lands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzer-
land, Turkey and the United Kingdom.

OECD Pacific: Australia, Japan, Korea and New Zealand)

2. Europe and Eurasia: Albania, Armenia, Azerbaijan, Belarus, Bosnia-Herzegovina,
Bulgaria, Croatia, Cyprus, Estonia, Serbia, Montenegro, the former Yugoslav Re-
public of Macedonia, Gibraltar, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithua-
nia, Malta, Moldova, Romania, Russia, Slovenia, Tajikistan, Turkmenistan, Ukraine
and Uzbekistan.

3. Asia: Afghanistan, Bangladesh, Bhutan, Brunei, Cambodia, China, Chinese Taipei,
Fiji, French Polynesia, India, Indonesia, Kiribati, the Democratic PeopleŠs Re-
public of Korea, Laos, Macau, Malaysia, Maldives, Mongolia, Myanmar, Nepal,
New Caledonia, Pakistan, Papua New Guinea, the Philippines, Samoa, Singapore,
Solomon Islands, Sri Lanka, Thailand, Tonga, Vietnam and Vanuatu.

4. Middle East: Bahrain, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar,
Saudi Arabia, Syria, the United Arab Emirates and Yemen.

5. Africa: Algeria, Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon,
Cape Verde, Central African Republic, Chad, Comoros, Congo, Democratic Repub-
lic of Congo, Côte d’Ivoire, Djibouti, Egypt, Equatorial Guinea, Eritrea, Ethiopia,
Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, Libya,
Madagascar, Malawi, Mali, Mauritania, Mauritius, Morocco, Mozambique, Namibia,
Niger, Nigeria, Reunion, Rwanda, Sao Tome and Principe, Senegal, Seychelles,
Sierra Leone, Somalia, South Africa, Sudan, Swaziland, United Republic of Tanza-
nia, Togo, Tunisia, Uganda, Zambia and Zimbabwe

6. Latin America: Antigua and Barbuda, Aruba, Argentina, Bahamas, Barbados, Be-
lize, Bermuda, Bolivia, Brazil, Chile, Colombia, Costa Rica, Cuba, Dominica, the
Dominican Republic, Ecuador, El Salvador, French Guyana, Grenada, Guadeloupe,
Guatemala, Guyana, Haiti, Honduras, Jamaica, Martinique, Netherlands Antilles,
Nicaragua, Panama, Paraguay, Peru, St. Kitts and Nevis, Saint Lucia, St. Vincent
and Grenadines, Suriname, Trinidad and Tobago, Uruguay and Venezuela.
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Appendix B

Fuel definitions

The following fuel definitions are adopted in this thesis (see [1] for more details):

Oil: includes crude oil, condensates, natural gas liquids, refinery feedstocks and addi-
tives, other hydrocarbons (including emulsified oils, synthetic crude oil, mineral
oils extracted from bituminous minerals such as oil shale, bituminous sand and oils
from coal liquefaction), and petroleum products (refinery gas, ethane, LPG, aviation
gasoline, motor gasoline, jet fuels, kerosene, gas/diesel oil, heavy fuel oil, naphtha,
white spirit, lubricants, bitumen, paraffin waxes and petroleum coke).

Coal: coal includes both primary coal (including hard coal and lignite) and derived fuels
(including patent fuel, brown–coal briquettes, coke–oven coke, gas coke, coke–
oven gas, blast–furnace gas and oxygen steel furnace gas). Peat is also included in
this category.

Nuclear: primary heat equivalent of the electricity produced by a nuclear plant with an
average thermal efficiency of 33%.

Hydropower: refers to the energy content of the electricity produced in hydropower
plants, assuming 100% efficiency. It excludes output from pumped storage plants.

Biomass and waste: solid biomass, gas and liquids derived from biomass, industrial
waste and the renewable part of municipal waste.

Other renewables: includes geothermal, solar PV, solar thermal, wind, tide and wave
energy for electricity generation and heat production.
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Appendix C

Estimated capacity factor in 25 sites
around the world

Table C.1. Average wind speed, in the ranges 50–150 m and 200–800 m above the
ground, and estimated Capacity Factors of a 2–MW, 90–m diameter wind turbine and
of a 2–MW, 500–m2 KG–yoyo for 25 sites around the world. Data collected daily form
January 1st, 1996 to December 31st, 2006.

Average wind speed Estimated CF
Site 50–150 m 200–800 m Wind tower KG–yoyo
Buenos Aires (Argentina) 5.7 m/s 9.1 m/s 0.18 0.63
Melbourne (Australia) 5.2 m/s 8.7 m/s 0.15 0.56
Porto Alegre (Brazil) 4.9 m/s 7.5 m/s 0.13 0.52
Nenjiang (China) 2.7 m/s 5.2 m/s 0.04 0.30
Taipei (China–Taiwan) 1.5 m/s 5.6 m/s 0.02 0.32
St. Cristobal (Ecuador) 6.0 m/s 6.5 m/s 0.15 0.44
Nice (France) 4.5 m/s 5.8 m/s 0.09 0.33
Calcutta (India) 2.8 m/s 5.6 m/s 0.02 0.31
Brindisi (Italy) 7.2 m/s 8.5 m/s 0.31 0.60
Cagliari (Italy) 7.2 m/s 8.2 m/s 0.31 0.56
Linate (Italy) 0.7 m/s 5.9 m/s 0.006 0.33
Pratica di Mare (Italy) 6.2 m/s 7.4 m/s 0.23 0.49
Trapani (Italy) 7.1 m/s 8.3 m/s 0.30 0.56
Udine (Italy) 1.5 m/s 5.6 m/s 0.02 0.32
Bandar Abbas (Iran) 1.5 m/s 5.6 m/s 0.02 0.32
Misawa (Japan) 4.4 m/s 7.8 m/s 0.11 0.50
Casablanca (Morocco) 2.4 m/s 7.0 m/s 0.03 0.45
De Bilt (The Netherlands) 8.0 m/s 10.7 m/s 0.36 0.71
Bodø (Norway) 6.9 m/s 8.7 m/s 0.28 0.56
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Table C.2. Average wind speed, in the ranges 50–150 m and 200–800 m above the
ground, and estimated Capacity Factors of a 2–MW, 90–m diameter wind turbine and
of a 2–MW, 500–m2 KG–yoyo for 25 sites around the world. Data collected daily form
January 1st, 1996 to December 31st, 2006 (continued).

Average wind speed Estimated CF
Site 50–150 m 200–800 m Wind tower KG–yoyo
Leba (Poland) 8.1 m/s 10.1 m/s 0.38 0.71
St. Petersburg (Russian Federation) 4.1 m/s 8.5 m/s 0.1 0.59
Port Elizabeth (South Africa) 7.5 m/s 8.9 m/s 0.20 0.58
Murcia (Spain) 2.6 m/s 5.9 m/s 0.03 0.35
Nottingham (United Kingdom) 1.3 m/s 5.3 m/s 0.01 0.31
Point Barrow (Alaska, U.S.) 6.6 m/s 8.8 m/s 0.25 0.59
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