Posts tagged: kitegen stem

Kitegen yoyo/stem e KiteGen carosello. Rapporto fra la velocità e la forza nella conversione energetica.

Scritto da Mario Marchitti
Il KiteGen è stato concepito in due configurazioni, lo yoyo o stem, ora in fase di avanzata realizzazione
a Sommariva Perno, e, originariamente, nella configurazione tipo carosello i cui rendering sono qui raffigurati.
Dal punto di vista della conversione energetica c’è una sostanziale differenza nella modalità di operare dell’aquilone o profilo alare, a seconda della tipologia del KiteGen, e questa differenza si riflette nei dimensionamenti di alcuni organi fondamentali.
In entrambe le configurazioni la navigazione al traverso dell’ala genera le forze aerodinamiche, di portanza e resistenza, utili per la conversione dell’energia eolica in energia meccanica e quindi elettrica.
Però nello yoyo o stem, l’ala si sposta anche lungo la direzione dei cavi che lo ancorano a terra ai generatori [1], con una importante componente nella direzione del vento vero, ed è proprio questa velocità e forza che si trasmettono lungo i cavi collegati a degli argani solidali ai generatori;
i cavi vengono quindi svolti, mettendo in rotazione i generatori. Mentre, nell’altro caso del carosello, la velocità e la forza utili sono circa allineate alla direzione dello spostamento al traverso che segue l’aquilone, e non c’è lo svolgimento dei cavi per produrre energia [1], perché, in questo caso, le forze aerodinamiche trascinano in rotazione un anello a cui sono collegati dei generatori.
In effetti, per quanto riguarda la modalità della conversione della potenza del fluido, la torre eolica tradizionale è più simile al carosello che non allo stem [2], perché anche nella torre eolica la forza utile è nella stessa direzione della velocità al traverso della pala, che non svolge dei cavi, ma trascina in rotazione il generatore al mozzo della torre.
La potenza applicata per spostare un oggetto è fisicamente definita come il prodotto della forza applicata per la velocità di spostamento dell’oggetto; così pure, per un generatore collegato a un argano, la potenza erogata (a meno di perdite di efficienza) è data dal prodotto della forza che fa girare l’argano per la sua velocità di rotazione tangenziale (oppure dalla coppia applicata per la velocità angolare).
Ora, nel primo caso dello Stem, è la forza che predomina, mentre nel Carosello predomina la velocità. Pertanto nel sistema a carosello i generatori sono molto meno sollecitati rispetto a quelli dello Stem. Nello Stem la velocità di svolgimento dei cavi è una frazione della velocità del vento vero, che è molto inferiore alla velocità apparente o al traverso che genera le forze aerodinamiche; mentre nel carosello la velocità di trascinamento dei generatori è circa uguale alla velocità al traverso che è molto superiore a quella del vento vero. Il contrario succede per la forza. Un dettaglio numerico del confronto può essere effettuato esaminando le formule 15, 16 e 17 riportate nel paragrafo Crosswind Motion dell’articolo di Miles Loyd che possono essere applicate al KiteGen stem [3]; queste formule sono da confrontare con quelle che esprimono il kite-power-factor che si ottiene considerando lo schema a carosello kpf = Vk/Vw (Cl – Cd *Vk/Vw)√((1+Vk/Vw)^2).
Considerando che la velocità al traverso dell’aquilone è molto maggiore del vento vero, la precedente formula si può semplificare in kpf = Cd(E*Rv^2 – Rv^3), dove E è l’efficienza Cl/Cd , e Rv è il rapporto fra le velocità, Vk/Vw.
Dalla formula 15 dell’articolo di Loyd si può ricavare il rapporto ottimale fra la velocità di srotolamento dei cavi dell’aquilone dello stem, Vk, e quello del vento vero atmosferico Vw, che è di 1/3. Cioè in presenza di un vento di 10 m/s si ottiene la massima potenza dallo stem con una velocità di srotolamento di 3.33 m/s. [NdR KiteGen comunque riconosce valida la formulazione di Loyd solo in un range limitato di velocità del vento, ovvero dal Cut In fino al raggiungimento della forza nominale della catena cinematica, dopo di che la formulazione cambia drasticamente a tutto vantaggio della produttività complessiva].
Nel caso del KiteGen Carousel invece, la velocità che occorre considerare nella produzione di energia è quella al traverso dell’aquilone, che, nel caso ottimale (supponendo un’efficienza pari a 10), è nel rapporto di 6.66 a 1 rispetto al vento vero (questo valore si ottiene derivando rispetto a Rv la formula semplificata del kpf e calcolando il valore di Rv che annulla la derivata).
Quindi, ipotizzando un vento vero di 10m/s, si ottiene la massima potenza con una velocità al traverso dell’aquilone di 66 m/s. A parità di kite-power-factor, cioè della potenza specifica generata dai due sistemi, il rapporto fra le velocità di generazione fra lo stem e il carosello è quindi di 3.3/66, cioè nel carosello la forza è trasmessa al generatore con una velocità 20 volte maggiore, pertanto il rapporto fra le rispettive forze deve essere inverso, cioè ai generatori dello carosello si trasmettono forze 20 volte inferiori.
Il dimensionamento degli organi di un argano-generatore, e quindi il loro costo, è determinato principalmente dalle forze applicate e secondariamente dalla loro velocità di rotazione, pertanto le precedenti osservazioni dovrebbero orientare alla scelta della configurazione a carosello, come più efficiente ed economica. Qui però intervengono anche altre valutazioni nelle scelte progettuali; perché va osservato che un KiteGen carosello non può scendere sotto una certa taglia, che è di qualche centinaio di metri di diametro dell’anello, mentre il KiteGen Stem può essere realizzato anche per potenze molto limitate, come del resto è il Mobile Gen, una versione di potenza ridotta, installata su un piccolo autocarro, quindi anche trasportabile. Va comunque detto che l’attuale stem, in costruzione a Sommariva Perno, oltre a rappresentare il prototipo di un impianto produttivo di alcuni MW, rappresenta anche una “palestra” per lo sviluppo delle tecnologie, che poi potranno trovare applicazione in un progetto ben più ambizioso, e più efficiente, come il KiteGen Carousel.
Note:
[1] In effetti anche l’aquilone del carosello si sposta lungo la direzione dei cavi, per due motivi: per “coprire” in modo ottimale l’area utile di estrazione dell’energia (vedi anche la nota successiva), e anche per superare i due “punti morti”, cioè quando l’aquilone deve cambiare la direzione o le mura del traverso.
[2] La formula del kite-power-factor si applica anche alla pala di una torre eolica tradizionale che, al pari dell’aquilone del KiteGen, è assimilabile a un profilo alare. La formula di per sé non indica un limite superiore di potenza estraibile da un profilo, perché nella formula la potenza è funzione principalmente dell’efficienza del profilo. Occorre però tenere presente che i sistemi per l’estrazione dell’energia eolica intercettano il fluido su un fronte, o tubo di flusso, limitato; quindi è possibile estrarre al più la potenza contenuta nel tubo di flusso. Nella torre eolica il fronte vento o superficie utile è quella che viene spazzata dalla rotazione della pala, che ha una lunghezza di 30-60 metri per le torri più potenti, mentre nel KiteGen il “raggio” con cui opera l’aquilone è assimilabile alla lunghezza dei cavi, che possono arrivare a mille metri e più, quindi con una superficie utile di centinaia di volte superiore a quella di una torre tradizionale. Occorre anche aggiungere che la potenza estraibile è anche funzione della velocità del vento vero al cubo, e questa, alla quota in cui opera attualmente il KiteGen Stem, di 500-1000 metri, è circa doppia di quella presente alle quote in cui opera una torre eolica, pertanto quest’altro aspetto va a moltiplicare per circa otto volte la potenza estraibile.
[3] Il documento di Loyd prende in considerazione l’energia aerodinamica estraibile da un profilo, però il dispositivo di conversione proposto dallo stesso autore è radicalmente differente sia dal KiteGen Stem sia dal KiteGen Carousel. Loyd, come soluzione progettuale, propone di installare i generatori direttamente sull’aquilone o profilo alare, quindi sono generatori che vengono trasportati in volo: una soluzione poco efficiente, pericolosa, e difficilmente scalabile per potenze oltre qualche decina di kW.

Ulteriori dettagli ai link.

http://kitegen.com/tecnologia-2/kite-gen-carousel/

http://kitegen.com/tecnologia-2/stem/

NB. Nel rendering del Carousel per consentirne la raffigurazione d’insieme,  non sono rispettate le proporzioni di progetto tra bracci, cavi e vele

Seminar: Struttura e componenti del KiteGen Stem

Il post sulle funzioni dello stem ha animato diverse discussioni tecniche sulla nostra lista pubblica kitegen . Il seminar che proponiamo oggi inquadra la tematica aggiungendo dettagli sulle altre componentistiche elettriche e meccaniche correlate, tra le quali i sensori, la struttura igloo, gli alternomotori.

Le sette funzioni dello Stem

Lo Stem, letteralmente “Stelo” è il componente più appariscente del Kitegen  in configurazione yo-yo, tanto che l’intera macchina viene denominata Stem.

E’un braccio robotico sensorizzato realizzato in materiali leggeri (alluminio o fibra di carbonio) montato su una torretta rotante vincolata alla struttura portante (igloo o cupola) mediante una ralla.

Sebbene molte soluzioni adottate nei vari progetti di eolico d’alta quota (compreso il nostro prototipo mobilgen) non prevedano un braccio robotico di tali dimensioni (circa 20 m) lo stem non è certamente un elemento decorativo ma implementa ben 7 funzionalità della macchina:

1) La grande maggioranza dei fallimenti nei decolli (kite-crash) o nelle manovre di volo avviene a bassa quota.  Lo stem consente di operare sempre con la vela posta ad una quota opportunamente lontana dal suolo; inoltre il vento presente a 15-20 m di altezza sul terreno è sempre più intenso che al suolo, quindi la vela a quell’altezza ha maggiore probabilità di trovare il vento con la velocità sufficiente per il decollo.

2) il movimento ed i gradi di libertà del braccio robotico stem consentono di effettuare delle rapide manovre che generano un vento apparante sufficiente per far alzare la vela in volo anche in caso di venti molto deboli.

3) Lo stem consente ai cavi in uscita dagli alternomotori e dagli argani di rimanere allineati per molti metri riducendo la fatica e le vibrazioni su questi componenti

4) lungo lo stelo sono posti i sensori capaci di inviare alla centrale di controllo le informazioni sulle deformazioni meccaniche in atto e la posizione del braccio.  In particolare sono presenti 9 nanogauge (sensori di deformazione) e gli encoder che misurano gli angoli di rotazione del braccio rispetto al piano orizzontale e verticale

5) Quando la vela è investita  da raffiche lo stem è il primo componente cui viene trasmessa la forza impressa dalla raffica mediante i cavi.  I sensori di deformazione inviano le informazioni alla centrale di controllo che, qualora si rilevino raffiche troppo intense, è in grado di rispondere adeguatamente con manovre atte ad allontanare la vela dalla finestra di potenza riducendo la sollecitazione meccanica.   Durante il tempo di elaborazione e reazione della centrale di controllo, che per quanto breve è non nullo, lo stem consente di assorbire la sollecitazione meccanica mediante una opportuna deformazione elastica, salvaguardando i componenti meccanici più delicati.

6)  lo stelo consente di supportare il compasso, che è una mano robotica montata sulla sua sommità, che aggiunge gradi di libertà alle manovre sui cavi e la vela.  In particolare le due “dita” (o baffi) del compasso divaricandosi mantengono separati i cavi durante le manovre e ne evitano gli intrecci (twisting)

7) Secondo l’orografia dei siti i venti possono variare la direzione prevalente più o meno rapidamente nel corso delle stagioni o anche nel corso di una stessa giornata. Lo stelo, ruotando in accordo con le direzioni dei venti, consente sempre di posizionare la vela secondo la finestra di massima potenza.

Panorama Theme by Themocracy