L’accumulo di energia secondo KiteGen

Una, come sempre, ottima analisi di Domenico Coiante fa il punto sulle rinnovabili e le necessità di accumulo giornaliero e stagionale.

Sembra la buona occasione per introdurre e chiarire la opportunità che offre in questo ambito la più grande sorgente in assoluto di energia concentrata disponibile sul pianeta, l’eolico troposferico.

Il grafico qui mostrato proviene dal volume della sezione metodologica dell’atlante dei venti di alta quota di Cristina Archer e Ken Caldeira, si tratta di una rappresentazione sofisticata che esprime una sorta di confronto competitivo o collaborativo tra i possibili sistemi di accumulo tradizionali, e l’opportunità di sfruttare l’accumulo naturale di energia nel regime stazionario del vento geostrofico, con un accorgimento per arrivare ad una disponibilità anche del 99,9%, ovvero 8751 ore l’anno garantite,  nettamente superiore alle fonti termoelettriche tradizionali e al nucleare.

Consiglio di dedicare il tempo sufficiente per decifrarlo sul documento originale poichè le implicazioni sono di estrema importanza. Su questo grafico sono state aggiunte le indicazioni di esempio riferite ad un KiteGen da 3MW nominali per rendere più facilmente comprensibile la logica. Le macchine KiteGen Stem per aderire all’esempio dovrebbero essere equipaggiate con ali di 150 mq con una efficienza aerodinamica equivalente oltre 20. Le ascisse rappresentano la dimensione della batteria di accumulatori rapportata alla dimensione dell’impianto eolico troposferico.

I venti che avvolgono il pianeta possono essere considerati come una colossale “flywheel” di accumulo energetico. L’atmosfera possiede una massa totale di 5 milioni di miliardi di tonnellate, 5*10^18 kg, che scorrono con una velocità media tale da portare il totale dell’energia accumulata a 100.000 TeraWattOra. Per fornire un paragone questa cifra che corrisponde alle attuali necessità energetiche delle attività del genere umano per oltre un anno, ma con il vantaggio che questo imponente accumulo è perennemente ripristinato dalle dinamiche fototermiche di origine solare.

Mentre per il fotovoltaico è necessario dispiegare sul territorio i pannelli che raccolgono minuziosamente l’energia diffusa, il KiteGen invece,  è la presa di forza di questo grande “pannello fotovoltaico fotomeccanico” già naturalmente costituito e mantenuto dall’atmosfera stessa. Questo pannello ha raccolto l’energia in forma cinetica, che è una forma nobile, ed è a disposizione per l’efficiente conversione elettrica.

Su uno specifico sito terrestre, nell’esempio nei pressi di NewYork, il generatore KiteGen può raggiungere e prelevare energia da questo flusso, con la probabilità di trovarlo sufficientemente potente per produrre energia alla potenza nominale  per il 68% del tempo,  un equivalente già strabiliante di circa 6000 ore annue.  Tuttavia vi è una limitazione, che non dipende dal flusso del vento che si affievolisce ma semplicemente dal fatto che cambia ciclicamente ed erraticamente latitudine.

Allora qual’è l’idea che il grafico esprime per spingere l’eolico troposferico fino ad una probabilità  del 95% di disponibilità o addirittura ad un 99,9%?  Abbastanza semplice, sono necessari due generatori dislocati sul territorio ad una distanza sufficiente da averne almeno uno investito dal flusso del vento. I due generatori sono da considerare come un unico sistema che produrrà il doppio del necessario per il 68% del tempo, ma che darà una garanzia di erogazione al valore nominale di uno  (e che ovviamente costeranno il doppio).

Nel grafico viene fatto il confronto con equivalenti ed ipotetici sistemi di accumulo elettrico, per ottenere lo stesso risultato dei due generatori distanziati.

Se assumiamo un costo dell’accumulo elettrochimico di 1 €/Wh, un punto che ho evidenziato nella figura (b) suggerisce 34,5 MWh,  quindi  34,5 milioni di euro per le sole batterie di accumulatori necessarie per assolvere al servizio di portare la disponibilità al 95%:  un costo nell’ordine di grandezza di oltre 10 volte rispetto alla brillante idea di avere una distribuzione sul territorio di generatori troposferici.

Cosa si ricava da queste riflessioni?:

1) l’intermittenza di erogazione che affligge l’eolico convenzionale ed il fotovoltaico può essere brillantemente superata con l’eolico troposferico;  attribuire al termoelettrico l’esclusiva sul baseload non è più corretto.

2)Il bilancio economico di questo impianto doppio può farsi carico in scioltezza della ridondanza dei generatori poichè può contare su 68% + 68% + 32%  ore di disponibilità annua, che corrisponderebbero a 11560 ore/anno  equivalenti.

3) in caso di una sufficiente distribuzione territoriale di farms KiteGen Stem, o di KiteGen Carousel, queste riflessioni perderanno il loro specifico valore, in quanto l’effetto di ridondanza lo si ottiene intrinsecamente.

4) la ridondanza porterebbe ad avere un eccesso di produzione potenziale, ma  i KiteGen sono facilmente e velocemente modulabili mediante un coordinamento centrale, offrendo un preciso adeguamento alla curva di domanda.

5) il grafico si riferisce a NewYork, ma l’influsso orografico di rallentamento si affievolisce con i venti di alta quota, rendendo valido l’esempio per buona parte del globo.

II Open Day KiteGen – Reminder

Ricordiamo che Domenica 24 giugno 2012  è fissato il 2° OPEN DAY KITEGEN organizzato da SOTER, Società per la Transizione alle Energie Rinnovabili, con la collaborazione del Comune di Sommariva Perno (CN)

SOTER, in poche settimane di attività, riunisce già oltre 40 soci che stanno dando supporto economico e professionale.
La giornata OPEN DAY consentirà a tutti coloro che sono interessati a supportare il progetto Kitegen, o anche solo a saperne di più, di poter conoscere lo stato dell’arte e toccare con mano la tecnologia grazie ad una visita al test plant dove i progettisti risponderanno anche alle domande ed alle curiosità dei visitatori.

L’invito è rivolto in particolare a tutti coloro che, di fronte all’emergenza energetica, al riscaldamento globale e alla crisi economica, sentono il valore e l’importanza per l’ambiente e per il mondo della transizione alle energie rinnovabili e sono disposti a farsene carico personalmente. Kitegen è infatti il progetto tutto italiano che ha le potenzialità per produrre a basso costo grandi quantità di energia pulita e con bassissimo impatto ambientale e paesaggistico.

Nell’occasione SOTER illustrerà le ragioni del proprio impegno nel progetto, gli obiettivi che si propone e le iniziative in corso. Verrà anche presentato il piano industriale per la produzione del primo lotto di macchine.

Vi attendiamo per l’OPEN DAY.

Programma dell’evento.

L’incontro si terrà a Sommariva Perno (CN) presso la Sala della Biblioteca Civica in Piazza Europa e successivo trasferimento al test plant KiteGen

Ore 9.00/9.30 Arrivo dei partecipanti

Ore 9.30 Inizio presentazione progetto. Discussione.

Ore 11.00 Presentazione iniziativa SOTER. Domande/Risposte.

Ore 11.30 Termine presentazione in sede.

Trasferimento al test plant KiteGen (5 min) e visita all’impianto.

Ore 13.00 Termine dell’incontro e proseguimento libero

E’consigliabile annunciarsi, telefonicamente o per email asoter@kitegen.com

011 9415745

348 0194810

La tecnologia KiteGen presentata agli allievi del Master SAFE

Per il secondo anno consecutivo ho tenuto, alcuni giorni or sono, una lezione sulla tecnologia KiteGen agli allievi del master post laurea di alta formazione in Gestione delle Risorse Energetiche della SAFE - Sostenibilità Ambientale Fonti Energetiche.  Sono stato anch’io allievo dell’edizione 2005 del Master SAFE, che è diviso in 7  moduli didattici, di cui tre relativi alle filiere dell’ Oil&Gas, dell’ Energia elettrica e delle fonti rinnovabili.   Le lezioni tematiche coprono sia aspetti tecnici che economici e sono tenute da professionisti che lavorano con aziende, istituzioni accademiche, enti di ricerca, e autorità ed enti governativi del settore energetico.  Alcuni di essi, come me, furono allievi delle passate edizioni e non è raro, per me, incontrare in vari contesti del mondo energetico persone che si sono formate nel settore anche grazie a questo master.  Nella mattinata di lezione ho illustrato agli allievi i concetti relativi all’eolico d’alta quota e le soluzioni tecniche realizzate nell’ambito della tecnologia KiteGen.  Pochi di loro conoscevano il settore dell’eolico d’alta quota e penso di aver aperto loro una finestra su un settore innovativo che non potrà essere trascurato dai futuri professionisti del mondo dell’energia quali saranno.   E’certamente una caratteristica meritevole di SAFE l’attenzione rivolta all’innovazione ed alle tecnologie come KiteGen che hanno la potenzialità di rivoluzionare il settore energetico nel futuro.

Per chi fosse interessato segnalo che SAFE sarà presente al Festival dell’energia, che si terrà a Perugia dal 15 al 17 Giugno, organizzando interessanti appuntamenti sui temi di maggiore attualità che riguardano il settore dell’energia.  Qui i dettagli

Seminar: Energia dai venti d’alta quota

comments Comments Off
By eugenio saraceno, 2012/06/12

Continua la pubblicazione dei seminar di KiteGen a cura dell’Ing.Andrea Papini.  In questo capitolo le potenzialità dello sfruttamento dei venti d’alta quota.

Per visualizzare la presentazione potrebbe essere necessario installare Adobe Shockwawe

Author: Ing.A.Papini

Incontro sul tema KiteGen ad Alessandria

comments Comments Off
By eugenio saraceno, 2012/06/07

Di Marcello Corongiu

Venerdì 8 Giugno alle 17.30 ad Alessandria, presso l’Aula Magna del Liceo Classico “G. Plana”, P.za Matteotti 29, Marcello Corongiu e Giacomo Torrente – nel contesto di un incontro promosso dall’Associazione PIGRECO e dall’Associazione Alta Quota – presentano la tecnologia KiteGen, un rivoluzionario generatore eolico per la produzione di energia pulita a basso costo e con il minimo impatto ambientale.

Energia-civiltà: una relazione indissolubile

Nel mondo ogni anno viene consumata energia pari a 12 miliardi di tonnellate di petrolio. Questa immensa – e difficilmente immaginabile – quantità di energia è circa pari a quella che il genere umano ha consumato nei suoi primi 200 mila anni di storia ed è, per più di tre quarti, prodotta da tre sole fonti: petrolio, carbone e gas. È grazie a questa immensa disponibilità di energia, il cui sfruttamento ha avuto inizio in modo significativo a partire dalla seconda metà del 18° secolo, che l’uomo ha potuto, affrancarsi in una certa misura dalla fame e dalla malattia, costruire megalopoli, viaggiare, nutrire 7 miliardi di individui, dominare il pianeta…

Tuttavia è questo un quadro la cui insostenibilità si mostra oggi in modo sempre più evidente, non solo per il carico ambientale ed i mutamenti strutturali sul clima e sugli ecosistemi, ma anche per le tensioni che il progressivo ridursi della accessibilità dei combustibili fossili esercita sulle economie, sui debiti degli Stati, sulla vita di tutti.

Il passaggio ad una civiltà basata sull’utilizzo di energia prodotta da fonti rinnovabili non è solo una cosa auspicabile ma necessaria e deve essere realizzata in tempi brevi. Il mercato delle fonti rinnovabili, fino ad oggi trainato dalle politiche pubbliche di incentivazione, a breve si espanderà – indipendentemente da esse – ma solo nella misura in cui esista una tecnologia in grado di sostituire in efficienza ed economicità, i combustibili fossili. L’alternativa è un progressivo, inevitabile, profondo e non indolore mutamento delle abitudini di vita e di consumo di ciascuno, soprattutto nei Paesi più industrializzati.

KiteGen può rappresentare una reale alternativa al declino e per questo ha già raccolto interesse in Cina, Australia, Canada, Polonia, Corea, Giappone ed in numerosi altri Paesi.

Il progetto è stato oggetto di innumerevoli valutazioni tecnico scientifiche e di “peer review”. Le fonti più autorevoli ne hanno di fatto attestato la validità su un piano globale. L’ENI Award conferito per una tesi di PhD sul KiteGen, il lavoro realizzato da CESI Ricerca sull’eolico d’alta quota, i riconoscimenti della NASA e di altri attori di primo piano nel panorama della ricerca nel settore energetico, le decine di tesi di laurea e di PhD volte ad analizzare il sistema nelle sue premesse e nelle sue componenti, il numero di nuovi soggetti internazionali che settimanalmente si affacciano nel settore della generazione eolica di altitudine, sono prove significative e reiterate della bontà del progetto, che è stato illustrato sulla stampa di ogni Paese: Scientific American, Nature, La Stampa, Il Sole 24 Ore sono solo alcune tra le centinaia di testate che hanno parlato del KiteGen, oltre alle numerose televisioni italiane, francesi, tedesche, svizzere, giapponesi, coreane, ecc.

Il progetto ha inoltre partecipato a numerosi bandi nazionali ed europei ottenendo valutazioni eccellenti ed è stato inoltre sostenuto dalla Commissione Europea, che ha finanziato la realizzazione di un generatore per uso a bordo delle navi (www.kitves.com).

La tecnologia KiteGen, che è nata e si è sviluppata in Piemonte, è tutelata da un patrimonio di 22 brevetti e per molti di questi 120 estensioni in tutto il mondo. Già nel 2006 KiteGen testava un prototipo funzionante da 40 kW nell’aeroporto di Casale Monferrato, generando energia con un ala in volo a circa 1000 metri di altezza e stabilendo un vantaggio di almeno 5 anni sui competitor più quotati a livello mondiale e costituendo oggi l’esperienza più avanzata su una frontiera potenzialmente determinante per l’intera umanità. Un esperienza che vorremmo, se le condizioni ce lo permetteranno, continuare a mantenere nel nostro Paese, trasformandola nel contributo italiano alla soluzione dei problemi energetici e climatici del mondo.

Valutazioni di CESI Ricerca sui sistemi KiteGen

comments Comments Off
By eugenio saraceno, 2012/06/05

Nell’ambito del programma di ricerca “Produzione di energia da fonte eolica con particolare riferimento ai sistemi offshore” CESI Ricerca (che attualmente ha assunto la denominazione ENEA – Ricerca sul Sistema Elettrico S.p.A., in forma breve ERSE S.p.A.) si è interessata al KiteGen fin dal 2008, incontrando anche il nostro team di Chieri.  A seguito di questo contatto i ricercatori del CESI hanno approfondito la tematica dell’eolico d’alta quota ed in particolare del KiteGen, giudicato il concetto più avanzato in un rapporto del 2009.  Recentemente i ricercatori del CESI hanno voluto aggiornarsi sullo stato dell’arte del KiteGen Stem visitando il test plant.  Che stiano per produrre un nuovo documento aggiornato? Se così fosse sarebbe veramente appropriato, considerato che la inedita tecnologia dell’eolico troposferico è in una tumultuosa evoluzione rendendo difficile per tutti gli interessati orientarsi fra le numerose proposte e l’affinamento della teoria sottesa.

KiteGen è più che convinta, pur essendo tra i pionieri, di aver stabilito lo stato dell’arte della tecnologia, con le due proposte Stem e Carousel. Ben venga un ente prestigioso di ricerca sul sistema elettrico come il CESI, che potrebbe trovare una metodologia oggettiva di valutazione come bussola di orientamento.

L’ambito tecnologico dell’eolico troposferico è molto articolato e pieno di sorprese migliorative ma poco intuitive. Per esempio il KiteGen Carousel e stato inizialmente descritto, nei lavori di tesi e dottorato, con delle ipotesi operative incomplete o molto semplificate, le opportunità che il concetto evidenzia affinandone la comprensione e l’analisi continuano a migliorarne le prestazioni attese.

Nel frattempo riportiamo un’elaborazione di Stefano Cianchetta sulla base di alcuni dei dati più significativi riportati nello studio. Le velocità medie rilevate durante le campagne di misurazione sono estremamente interessanti benchè le più ventose località del sud non siano incluse per insufficienza dei dati e le quote non siano elevatissime.  Si ricordi che la potenza del vento è proporzionale al cubo della velocità.

II OPEN DAY KITEGEN


Domenica 24 giugno 2012  è fissato il 2° OPEN DAY KITEGEN organizzato da SOTER, Società per la Transizione alle Energie Rinnovabili, con la collaborazione del Comune di Sommariva Perno (CN)

SOTER, in poche settimane di attività, riunisce già oltre 40 soci che stanno dando supporto economico e professionale.
La giornata OPEN DAY consentirà a tutti coloro che sono interessati a supportare il progetto Kitegen, o anche solo a saperne di più, di poter conoscere lo stato dell’arte e toccare con mano la tecnologia grazie ad una visita al test plant dove i progettisti risponderanno anche alle domande ed alle curiosità dei visitatori.

L’invito è rivolto in particolare a tutti coloro che, di fronte all’emergenza energetica, al riscaldamento globale e alla crisi economica, sentono il valore e l’importanza per l’ambiente e per il mondo della transizione alle energie rinnovabili e sono disposti a farsene carico personalmente. Kitegen è infatti il progetto tutto italiano che ha le potenzialità per produrre a basso costo grandi quantità di energia pulita e con bassissimo impatto ambientale e paesaggistico.

Nell’occasione SOTER illustrerà le ragioni del proprio impegno nel progetto, gli obiettivi che si propone e le iniziative in corso. Verrà anche presentato il piano industriale per la produzione del primo lotto di macchine.

Vi attendiamo per l’OPEN DAY.

Programma dell’evento.

L’incontro si terrà a Sommariva Perno (CN) presso la Sala della Biblioteca Civica in Piazza Europa e successivo trasferimento al test plant KiteGen

Ore 9.00/9.30 Arrivo dei partecipanti

Ore 9.30 Inizio presentazione progetto. Discussione.

Ore 11.00 Presentazione iniziativa SOTER. Domande/Risposte.

Ore 11.30 Termine presentazione in sede.

Trasferimento al test plant KiteGen (5 min) e visita all’impianto.

Ore 13.00 Termine dell’incontro e proseguimento libero

E’consigliabile annunciarsi, telefonicamente o per email a soter@kitegen.com

011 9415745

348 0194810

K-Bus e trasporto pubblico elettrico

comments Comments Off
By eugenio saraceno, 2012/05/22

Come premesso fin dall’inizio questo blog tratta del KiteGen e di tutte le tecnologie e le tematiche correlate, che potrei riassumere in tutto ciò che consuma energia elettrica rinnovabile a basso costo ovvero lo scenario cui dobbiamo tendere nella realizzazione del progetto KiteGen.  Tra queste si annoverano sicuramente le tecnologie relative al trasporto pubblico elettrico sia su gomma che su ferro (e ricordiamo il convegno del 24/5 sul tram-treno).   Consideriamo di particolare interesse lo sviluppo di veicoli dotati di accumulo mediante supercondensatori a ricarica ultrarapida, una tecnologia brevettata da Sequoia, che prende il nome di Biberonaggio e deriva dallo sviluppo di un buffer utilizzato dal KiteGen durante la fase attiva di produzione per stoccare energia da utilizzare durante la fase passiva di rientro.

Questa tecnologia è di valida applicazione su servizi di bus pubblici (K-Bus) che effettuerebbero la ricarica alle fermate, in 10-15 secondi, mentre i passeggeri salgono e scendono, mediante un dispositivo formato da una “zampa” mobile che automaticamente si accoppia conduttivamente con un “tappeto” posizionato sotto l’area di fermata del bus.  Il posizionamento della zampa e l’attivazione del tappeto (che normalmente è posto a massa per esigenze di sicurezza) sono orchestrate da un sistema automatico che libera l’autista dall’incombenza di gestire l’operazione.  La ricarica conduttiva effettuata mediante questo sistema consente la ricarica ultrarapida, supportata da un altro stoccaggio, sempre costituito da supercondensatori, posto presso il punto di ricarica.  Il sistema è dimensionato in modo che il dispositivo posto alla fermata si ricarichi durante le soste tra i passaggi dei bus e fornisca la ricarica rapida alla vettura per garantire alcuni km di autonomia sfruttando le caratteristiche fisiche del mezzo di accumulo (il supercap non è un accumulo chimico ma un condensatore a tutti gli effetti, in cui la superficie delle armature è estesissima e i tempi di carica e scarica sono quelli tipici dei condensatori, quindi ultrarapidi).  Un pantografo non garantirebbe gli stessi tempi di ricarica.  Altro vantaggio dei supercapacitori è la possibilità di ricaricare anche durante la marcia con l’energia estratta in fase di frenata (regenerative braking).


In figura un confronto tra le varie opzioni di trasporto elettrico disponibili.

Dal punto di vista economico, una simulazione di una linea k-bus servita da 4 mezzi su un tipico percorso urbano mostra un costo di gestione inferiore del 40% rispetto ad un’analoga linea servita da mezzi a ricarica parziale induttiva. Il rafforzamento della performance economica è in buona parte dovuto al fatto che i supercondensatori, contrariamente agli accumulatori elettrochimici come le batterie al litio, non devono essere sostituiti e la loro durata supera abbondantemente il ciclo di vita del mezzo sul quale sono montati, inoltre sono reciclabili e composti principalmente da materie prime molto abbondanti come carbonio e alluminio.


In figura, fatto 100 il costo della mobilità elettrica con batterie elettrochimiche, si pongono a confronto le alternative, anche in relazione all’effetto dell’impatto della mobilità sull’economia. Vedi anche riflessioni su eroei

Le modalità di trasporto pubblico su ferro con pantografo e su gomma con ricarica ultrarapida di supercapacitori non necessariamente vanno in conflitto, anzi potrebbero essere sinergiche come ad esempio per un tram che, a fronte di particolari vincoli, debba interrompere l’alimentazione da pantografo per tratti più o meno lunghi.
In sostanza le due modalità sono compatibili e complementari in un contesto di trasporto regionale integrato in cui il tram treno è preferibile nelle aree centrali o comunque molto urbanizzate in cui l’intensità delle utenze giustifichi l’alto costo dell’infrastruttura oppure per i lunghi percorsi veloci tra grandi e medi centri urbani mentre il K-Bus trova la sua migliore applicazione nel collegare i nodi serviti dal mezzo su ferro con le aree periferiche o i piccoli centri (trasporto extraurbano) oltre che per altri servizi che svolgono percorsi predefiniti come ad es. la raccolta dei rifiuti o taluni tipi di  logistica e di distribuzione.
Per quanto riguarda il trasporto privato con mezzi elettrici non vi è ancora interesse a proporre la tecnologia biberonage almeno finchè l’infrastruttura dedicata al K-Bus non sia talmente capillare da poter effettuare la ricarica anche per l’utente privato  (ad es. ai semafori) e/o la capacità dei supercondensatori non si avvicini a quella tipica delle batterie al piombo di 30 Wh/kg (siamo ancora intorno ai 10 Wh/kg).

Successo dell’OPEN DAY KiteGen

A grande richiesta pubblichiamo una sintesi multimediale dell’open day KiteGen del 13/05/12. La partecipazione e la curiosità dei numerosi intervenuti è stata premiata con una demo di volo particolarmente ben riuscita, tanto che abbiamo deciso di pubblicarne le fasi più salienti in un video

L’importanza dell’open day risiede appunto nella possibilità di mostrare dal vivo gli avanzamenti dello stato dell’arte che, in questa fase di test dedicato al volo ed alle performance delle vele, si risolve anche in spettacolari dimostrazioni di come il braccio robotico del kitegen, ormai completo perchè dotato della sua mano unitamente alle migliorie apportate alle vele, riesca a far decollare e volare in modo semiautomatico il kite.
Nella demo mostrata  la maggior parte dei movimenti che si vedono fare alla macchina (stem + compasso) erano completamente automatici, (per chi ha nozioni di controlli automatici erano retroazionati, dai sensori presenti nel braccio, nel compasso e nella struttura). Ciò che era manuale, e che altrimenti non poteva essere senza l’elettronica a bordo ala, temporaneamente indisponibile,  era il controllo dei tamburi e di conseguenza delle funi e della vela. La vela è infatti dotata in particolare dei sensori che misurano la posizione e la velocità della stessa e la trasmettono all’elaboratore che, ponendole a confronto con una traiettoria obbiettivo, aziona le funi secondo una funzione che può essere proporzionale e/o derivativa e/o integrale allo scopo di correggere gli errori rilevati rispetto alla traiettoria stessa. Al successivo passo di elaborazione, la nuova misura inviata dai sensori, su cui avranno influito le azioni meccaniche attuate dalle funi al precedente passo, viene analizzata e produce una nuova correzione fino al convergere a zero dell’errore. Si tratta in genere di cicli elaborativi dell’ordine dei millisecondi. Questo è in termini estremamente semplificati il concetto di retroazione o feedback alla base di ogni tecnologia di  automazione e robotica.
C’è ancora del lavoro da fare per rendere completamente automatico il volo, che richiede ancora alcune attività manuali, a cui i nostri ospiti hanno assistito, ma l’ottimo lavoro fatto sul software di gestione del decollo dai nostri progettisti Paolo Marchetti e Angelo Conte ci consente di essere confidenti sul buon esito a breve del pacchetto “decollo automatico”.
Intuirete che il prossimo passo sarà aumentare la potenza estratta dal vento aumentando le performance del kite.
L’open day è stato anche dedicato a presentare l’attività di SOTER s.r.l., realtà esclusivammente dedicata al supporto del progetto KiteGen. Presso la sede di Sequoia Automation a Chieri, Riccardo Renna ha illustrato ai presenti, le attività di SOTER riscuotendo notevole interesse.

Nella foto il nutrito gruppo di ospiti del primo Open Day KiteGen realizzato con la collaborazione di SOTER

Importante convegno sul tram – treno a Pisa

comments Comments Off
By terenziolongobardi, 2012/05/14
Pressanti esigenze di carattere ambientale e sanitario consigliano di trasferire quote significative di mobilità nelle aree urbane del nostro paese dal mezzo privato a quello collettivo. Questa esigenza sarà rafforzata nei prossimi anni dalla dinamica crescente e strutturale dei prezzi petroliferi, che farà aumentare la domanda di trasporto collettivo di qualità. Inoltre, siccome la produzione di energia elettrica italiana corrisponde a circa il 36% del Consumo Interno Lordo di energia primaria, in futuro dovremo aumentare la penetrazione dell’energia elettrica anche nei settori della mobilità e degli usi termici, utilizzando tutto il potenziale delle fonti rinnovabili attraverso tecnologie come il kitegen e nel contempo migliorare l’efficienza energetica complessiva del sistema. Come ho spiegato qui i trasporti collettivi, in particolare quelli su ferro, sono caratterizzati da ridotti consumi specifici di energia primaria.
Purtroppo, l’attuale sistema di trasporto pubblico italiano, prevalentemente su gomma, non è in condizione di rispondere in maniera efficace ed economicamente competitiva a queste sfide.
Le esperienze europee più avanzate dimostrano che si possono conseguire elevati livelli di qualità e produttività del servizio, solo con l’utilizzo dei moderni sistemi di trasporto tranviario e ferro-tranviario.
Per cercare di superare il gap che ci divide da questi paesi c’è la necessità di avviare un grande programma nazionale di espansione del trasporto su ferro nelle aree urbane, che io ho sintetizzato nello slogan “1000 km di nuove linee ferro-tranviarie”.
Per questi motivi, l’associazione AMT (Associazione per gli studi sulla mobilità ed i Trasporti in Toscana), ha organizzato l’anno scorso un primo convegno a Firenze sulla innovativa tecnologia del tram – treno che, sfuttando la possibilità di percorrere indifferentemente sia tracciati urbani che linee ferroviarie esistenti, consente di accrescere esponenzialmente i passeggeri trasportati (come ho sintetizzato in questo articolo).
L’associazione, verificato il successo della prima iniziativa, ha deciso di organizzare un altro incontro più applicativo, relativo a una specifica realtà toscana, l’area vasta Pisa – Pontedera – Lucca -Livorno in cui la domanda di trasporto è di tipo metropolitano, anche per la presenza di molti e importanti poli di attrazione economici, culturali e turistici e in cui è presente una fitta rete ferroviaria e alcune linee ferroviarie locali, attualmente sottoutilizzate rispetto alle potenzialità reali.
Il programma del convegno, che si svolgerà a Pisa il prossimo 24 Maggio, è scaricabile qui dal sito di AMT. La partecipazione è gratuita, ma è indispensabile effettuare una preiscrizione, con le modalità descritte sullo stesso sito.

OPEN DAY KiteGen

Domenica 13 maggio 2012 si terrà il Primo OPEN DAY Kitegen organizzato in collaborazione con SOTER, Società per la Transizione alle Energie Rinnovabili.
SOTER srl nasce nel 2011 unicamente per supportare il progetto Kitegen e riunisce già numerosi soci che stanno dando supporto economico e professionale.

La giornata OPEN DAY consentirà a tutti coloro che sono interessati a supportare il progetto Kitegen, o anche solo a saperne di più, di poter conoscere lo stato dell’arte e toccare con mano la tecnologia grazie ad una visita al test plant dove i progettisti risponderanno anche alle domande ed alle curiosità dei visitatori. L’invito è rivolto in particolare a tutti coloro che, di fronte all’emergenza energetica, al riscaldamento globale e alla crisi economica, sentono il valore modiale e l’importanza per l’ambiente e per il mondo della transizione alle energie rinnovabili e sono disposti a farsene carico personalmente.

Vi attendiamo per l’OPEN DAY, l’incontro si terrà nella sola mattinata con l’eventuale possibilità di proseguire l’incontro dalle 13 in poi A PRANZO per chi non farà rientro immediato nella propria sede. qui sotto trovate il programma dettagliato dell’evento.

Ore 9.15/9.30 Inizio presentazione progetto in sede a Chieri (TO) Via XXV Aprile 8

Ore 10.30/11 Termine presentazione

40’ di trasferimento per recarsi sul sito del test plant

Ore 11.00/11.30 Visita al sito. Domande/risposte

Ore 13.00 Termine visita e proseguimento libero

Per ulteriori informazioni

011 9415745

348 0194810

Compasso

Scritto da Igor Sabetti

progettista elettromeccanico del team KiteGen

L’ultimo componente del kitegen stem realizzato è il cosiddetto compasso,  una “mano” robotica che ha la funzione di tenere divaricati i cavi che controllano la vela, facilitando le manovre di decollo e rientro.

Per comprendere la funzionalità del “compasso” dobbiamo fare un passo indietro e capire il funzionamento del kitesurf e/o kiteboarding.

Il kitesurfing (o kitesurf o kiteboarding) è uno sport acquatico, di recente invenzione (1999), nato come variante del surf; consiste nel farsi trascinare da un aquilone ( “kite” in inglese), che usa la potenza del vento come propulsore e che viene manovrato attraverso una “barra di controllo” (boma), collegata al kite da sottili cavi (due o quattro) di dyneema o spectra detti “linee” e lunghi tra i 22 e i 27 m. Il kitesurfing richiede inoltre l’utilizzo di una tavola per solcare il mare. (Tratto da Wikipedia)

Il “compasso”, soprannominato così perché le due lunghe antenne che si aprono e chiudono ricordano la forma del compasso da disegno tecnico, emula il movimento delle due braccia umane per richiamare le funi di manovra. Le due funi nella foto verso il bordo d’attacco (leading edge) sono quelle di potenza mentre quelle posteriori sono per la frenata che in gergo si chiama depowering. Nel sistema KiteGen non sono presenti le funi di depowering poichè il ciclo di funzionamento prevede una fase attiva in cui il kite raggiunge la massima quota operativa compiendo delle evoluzioni a forma di otto rovesciato, ed una fase passiva in cui ritirando un solo cavo la vela assume un assetto “a bandiera” e ritorna alla quota minima con il minimo dispendio energetico per ricominciare poi il ciclo. Per maggiori dettagli sul ciclo di produzione è consigliabile visionare il filmato qui sotto, in cui la manovra di scivolata appare al minuto 2.

La barra di manovra può essere unita, nel caso di kite per trazione con le due funi di controllo fissate agli estremi mentre la terza linea di traino l’attraversa al centro per mezzo di un foro, come separata per piccoli kite.

In linea di massima, similmente alla bicicletta, tirando la fune destra per mezzo della barra il kite va a destra e viceversa.
In questo link è spiegata bene la funzione della barra di controllo:

Il compasso è un elemento fondamentale per manovrare il kite in fase di decollo ed atterraggio. Successivamente la sua presenza diventa impercettibile.
In assenza del compasso, quando il kite è appeso, in fase iniziale tende a compiere diversi twist (ovvero le funi si attorcigliano) rendendo impraticabile la manovra di decollo.

Ognuna delle antenne in Kevlar/carbonio con anelli passanti in ceramica, è sensorizzata su 2 assi ovvero per il tiro della fune che l’attraversa sia in verticale che orizzontale.
Due motori posti alla base dello stem governano le leve di azionamento delle antenne per mezzo di lunghi bowden (simili alle funi in acciaio e guaina dei freni di bibicletta) di tipo push-pull governati dal software.

Dato che è impossibile riuscire a opporsi alla forza del vento senza danneggiare gli organi meccanici questi ultimi assecondano la “volontà” del vento posizionandosi linearmente al tiro della fune oltre un certo range di potenza. Il sistema in fase di test preliminare è visibile nel video allegato.

In fase di atterraggio il sistema divarica nuovamente le antenne agevolando la stabilità del kite.

In fase di decollo il compasso rimane aperto incoraggiando l’aria ad incanalarsi nel kite e successivamente si chiude con estrema velocità. Se il vento non è eccessivo il presidio software può lasciare mezze aperte le antenne o una aperta ed una chiusa.

Similarmente alle braccia oltre che determinare/rilevare la posizione del kite può aiutare con degli impulsi al sollevamento dello stesso. Per esperienza personale posso dire che chiudendo gli occhi per qualche secondo sono riuscito a far compiere degli “8” rovesciati al kite solo sentendo la forza applicata alle funi. Allo stesso modo i recettori tattili delle antenne si comportano come le “vibrisse” dei gatti.

Il compasso che vedete in queste immagini ha avuto una progettazione abbastanza controversa essendo giunto ormai alla 5° versione le cui prestazioni sono finalmente accettabili.   Nel corso dei test una serie di idee e soluzioni tecniche è stata via via scartata avvicinandosi sempre più allo strumento idealizzato da M. Ippolito e riprodotto nell’ormai celebre modellino presentato in varie occasioni.

I seminari di Kitegen

comments Comments Off
By eugenio saraceno, 2012/04/24

Da oggi e per le prossime settimane pubblichiamo i seminari di Kitegen, a cura dell’Ing.Andrea Papini.  I seminari sono un progetto organico di presentazioni multimediali dedicate alla tecnologia Kitegen.  Il primo seminario tratta le prospettive della produzione energetica mondiale ed individua le potenzialità dell’energia eolica d’alta quota.
Per visualizzare la presentazione potrebbe essere necessario installare Adobe Shockwawe

Author: Ing.A.Papini

O Kitegen o barbarie (breve storia energetica della civiltà)


Spero mi perdonerete l’intento ambizioso di questa breve storia energetica della civiltà, ovvero dimostrare che l’ultima speranza per fermare la crisi planetaria e rilanciare l’economia su basi più sane e sostenibili è lo sfruttamento di un nuovo giacimento di energia ad alto EROEI e l’ultimo giacimento con tali caratteristiche è il vento d’alta quota.
Si definisce Energy Return On Energy Investment (EROEI) di una fonte il rapporto tra energia ottenuta dalla fonte ed energia impiegata per estrarla. Vi sono fonti di energia anche più abbondanti del vento di alta quota, come la luce solare ma i sistemi di trasformazione in energia elettrica di tale fonte hanno tipicamente EROEI inferiori a 10 (unità di energia ottenute investendo una unità), più bassi dunque di quelli del petrolio o del gas estratti oggi da giacimenti convenzionali (EROEI tra 10 e 20) o del carbone (tra 80 e 60) vedi articoli su The Oild Drum. Torneremo in un successivo articolo ad approfondire il significato di questi aspetti, non prima di aver fornito un quadro sufficientemente completo del ruolo dell’energia nell’economia.
Sopravviviamo grazie all’energia e tutto ciò che consumiamo o facciamo ha una certa percentuale di energia incorporata (Embodied Energy o Emergy). Il legame tra la quantità di energia che consumiamo ed il nostro stile di vita è evidente; meno evidente ma non meno importante è il legame tra quantità di energia che riusciamo ad ottenere investendo un’unità di energia ed il nostro stile di vita. In buona sostanza i prodotti e i servizi che noi consumiamo accumulano un patrimonio energetico durante le varie fasi della lavorazione e dello smaltimento finale, ma anche durante il consumo stesso. Ad es. il servizio Settimana Bianca contiene sicuramente molta energia (cannoni sparaneve, pasti, servizi climatizzazione albergo, seggiovie) ma anche per essere fruito (viaggio in automobile verso la località). I lavoratori e i capitalisti (es.la proprietà della catena alberghiera) che collaborano alla fruizione della vostra vacanza percepiscono parti del valore del pacchetto vacanza, sotto forma di reddito o profitto che poi ciascuno di essi utilizza per fruire di servizi e prodotti anch’essi contenenti energia. Se ci pensate un pò sopra troverete che tutto contiene energia e se ,come è evidente, il 100% del PIL (che è un dato annuale) non è dedicato alla spesa energetica è solo perchè una buona parte dell’energia che costituisce il vostro prodotto/servizio è stata spesa in anni precedenti al dato PIL attuale (anche molti anni prima, come ad esempio l’energia utilizzata per costruire e manutenere fino ad oggi l’albergo della vostra vacanza, del quale ogni singolo pezzo ha richiesto energia, lavoro umano e capitali per essere prodotto, trasportato ed assemblato in cima alla montagna). Dunque se apparentemente una famiglia media spende solo il 30% del reddito in energia vera e propria (carburanti,elettricità, riscaldamento, cibo) anche l’altro 30% che spende per pagare il mutuo sulla abitazione è una spesa energetica anche se quell’energia non è stata consumata esattamente quest’anno, e non è che le altre spese (es telefonino o abito nuovo) siano esenti dalla onnipresente tassa energetica.
Pertanto, se il vostro reddito è energia, spesa in qualche istante del tempo, risulta chiaro che l’energia spesa per produrre una unità di energia conta ai fini di cosa potete acquistare con il reddito stesso. Più energia (reddito) ci vuole per produrre una unità energetica più reddito sarà necessario per acquistare il prodotto/servizio fatto con quell’energia. E la quantità di energia necessaria per produrre una unità energetica è l’inverso dell’eroei della fonte da cui è estratta quindi maggiore è l’eroei delle fonti a cui avete accesso, maggiore sarà la quantità di consumi che potrete avere con un dato reddito. Questo è il legame tra stile di vita ed eroei. Se una civiltà utilizza percentuali di diverse fonti energetiche l’eroei tipico di tale civiltà si potrebbe misurare con una combinazione lineare pesata delle varie percentuali con gli eroei relativi a ciascuna fonte. Il grado di benessere materiale medio di una civiltà, dopo un congruo numero di anni di sviluppo (ricordiamoci l’energia che si spende anno per anno in infrastrutture) è così legato alla qualità delle fonti energetiche che utilizza in termini di eroei.

(fine parte 1. Continua)

Canali energetici

Questo è il primo di una serie di post in cui cercherò di inquadrare alcune delle più importanti questioni geopolitiche legate all’energia.  Qui in particolare vorrei approfondire il concetto di  sicurezza energetica.   L’impatto di uno sviluppo massivo dello sfruttamento di energia eolica d’alta quota porterebbe ad un sicuro ridimensionamento di tali tematiche in quanto questa forma di energia è ampiamente distribuita e disponibile su tutto il pianeta.

Molte questioni geopolitiche dal dopoguerra ad oggi sono strettamente legate a questioni energetiche,  Per citare alcuni esempi degli ultimi anni le guerre di Cecenia, le tensioni con l’Iran, la questione della Turchia nell’unione europea, le tensioni Russia-Ucraina, la guerra in Afghanistan, quella in Iraq e infine il conflitto libico sono da ricondurre ad uno dei maggiori problemi geopolitici che interessano il pianeta ma in particolar modo la massa terrestre eurasiatica, il problema dei corridoi energetici e della sicurezza degli approvvigionamenti, dove sicurezza non sta solamente a significare non interruzione dell’approvvigionamento ma anche e soprattutto controllo economico e politico sulle risorse energetiche e sui canali preposti a trasferirli dal produttore al consumatore.

I canali energetici per l’approvvigionamento di idrocarburi sono di due tipi: pipeline (oleodotti e gasdotti) e vie marittime (petroliere e metaniere per il trasporto di GNL – gas naturale liquefatto).  Le pipeline richiedono la costruzione ed il mantenimento di una infrastruttura terrestre o sottomarina (un condotto metallico con stazioni di pompaggio che mantengano la pressione e la portata dell’idrocarburo veicolato).  Nel caso di pipeline terrestre uno dei problemi principali è quello dei paesi attraversati cui è dovuta una tariffa di “transito” e che in caso di divergenze in materia di politica internazionale potrebbero ostacolare o interrompere il rifornimento via pipeline.  Per contro l’esistenza stessa di una pipeline garantisce il produttore di avere un mercato assicurato per i propri idrocarburi, e il consumatore che il produttore non abbia convenienza ad interrompere la fornitura per ridirigerla ad altro paese consumatore concorrente, in quanto il produttore stesso ha già investito nell’infrastruttura, e per rifornire un concorrente dovrebbe perdere quanto investito ed inoltre utilizzare ulteriori risorse per costruire una nuova infrastruttura verso il nuovo cliente.  Parimenti al paese consumatore non conviene azzerare i contratti di fornitura pena doversi dotare di nuove infrastrutture.  Si potrebbe inferire che le pipeline “cementano” in qualche modo i rapporti energetici tra paesi fornitori e consumatori.

I canali di approvvigionamento via mare sono caratterizzati lato consumatore dalla presenza di infrastrutture costiere (porti attrezzati, stoccaggi e rigasificatori) e lato produttore da terminali petroliferi e impianti (treni) di liquefazione del gas naturale.  Il trasporto è assicurato da naviglio altamente specializzato: tankers e metaniere.   L’approvvigionamento marittimo è altamente flessibile in quanto l’infrastruttura del produttore non è rigidamente collegata a quella del consumatore e, fatti salvi contratti ed eventuali penali, la fornitura può essere in taluni casi (ad esempio quando esistono forti differenziali di prezzo tra un mercato ed un altro) re diretta su un nuovo cliente disposto a pagare di più.   La sicurezza dei canali di approvvigionamento via mare può essere assicurata o ostacolata da una potenza militare navale.  Attualmente le maggiori potenze navali sono USA e GB, potenze minori, ma importanti a livello regionale sono Russia, Cina, Francia, India.

Per un paese consumatore è essenziale non solo assicurarsi forniture non interrotte, ma anche controllare il canale delle forniture e, possibilmente, anche la risorsa stessa.   L’importanza del controllo del canale contro intuitivamente è maggiore di quella del controllo della risorsa stessa, infatti i canali energetici consentono, in molti casi, di “attirare” le risorse, che non potrebbero essere vendute senza il canale stesso. L’Iran, ad esempio, finché dura l’ostilità con gli USA avrà difficoltà a piazzare le proprie ingenti risorse di gas sia via terra attraverso la Turchia o il Pakistan, paesi vincolati (per la verità sempre meno entusiasti) agli interessi USA, sia via mare in quanto le flotte USA non avrebbero difficoltà a bloccare qualsiasi naviglio iraniano in uscita da Hormuz qualora lo desiderassero. La Russia, per contro, sin dai tempi sovietici, ha realizzato numerose pipeline per rifornire i vicini europei ed incamerare preziosa valuta estera.  Questa ultima necessità ha fatto si che le forniture sovietiche non venissero mai meno agli europei nemmeno negli anni più duri della Guerra Fredda.  L’affidabilità della Russia come fornitore di idrocarburi via pipeline ha spinto l’Unione Europea a ricercare una partnership che può essere vista dagli USA come un pericolo per la propria egemonia planetaria, basata in buona parte sulla capacità di controllare e regolare i mercati energetici e le relative forniture.  Un Europa vincolata energeticamente alla Russia consente di creare a livello regionale euroasiatico una zona di intensi scambi economici fuori dal controllo USA, scambi che possono favorire intese politiche potenzialmente dannose per il ruolo egemonico della superpotenza americana.

Obbiettivo prioritario per la politica USA negli ultimi 20 anni è stato indebolire il ruolo della Russia quale fornitore strategico di idrocarburi ai paesi europei. Dopo aver rilevato che i maggiori giacimenti di gas appartengono a (in ordine di consistenza) Russia, Iran e Qatar,  se si osserva la mappa il confronto strategico tra USA e Russia in questa fase geopolitica viene subito evidenziato, e risulta chiaro anche la ragione per cui l’attività di politica estera americana si sia concentrata sul cercare di attirare nella propria sfera di influenza quei paesi ex sovietici che si trovano lungo i percorsi delle maggiori pipeline dirette in Europa.   La prima direttrice presa di mira dalla strategia statunitense fu quella nord caucasica, che veicolava petrolio dal nord del Caspio verso il Mar Nero e quindi, attraverso il Bosforo, ai mercati del mediterraneo.   L’appoggio degli anglo americani, ai guerriglieri ceceni che rivendicavano l’indipendenza da Mosca attraverso un retroterra logistico appositamente preparato nella vicina Georgia, più che sensibilità per la causa indipendentista denotava l’interesse ad ostacolare il flusso di idrocarburi attraverso quella direttrice che aveva un tratto passante per la Cecenia.  Parallelamente alcune major petrolifere approfittavano della situazione per realizzare, sempre attraverso la Georgia, un nuovo oleodotto sud caucasico, concorrente di quello controllato dai russi e reso insicuro dalla guerra cecena, il BTC, Baku-Tblisi-Cheyan che dalle coste del Caspio veicola il petrolio Azero verso il porto mediterraneo turco di Cheyan.  Il BTC ha una capacità di 1 mln di barili al giorno, sovrabbondante per le esportazioni Azere, il che denota l’intenzione strategica di offrire ad altri paesi rivieraschi del Caspio uno sbocco al mediterraneo che non fosse sotto il controllo russo.  Inoltre il BTC potrebbe essere prolungato agevolmente verso le coste israeliane, consentendo così di soddisfare un’altra priorità strategica USA, sicurizzare l’approvvigionamento energetico di Tel Aviv anche nell’eventualità di un embargo petrolifero da parte di produttori arabi.

I russi non stettero a guardare e ovviarono al problema della sicurezza della pipeline nord caucasica realizzando rapidamente un bypass del tratto ceceno, con la collaborazione dell’italiana ENI, un partner strategico storico dei russi (ma che comunque per non scontentare alcuno ha anche una sua quota di partecipazione al BTC e sostanziose quote azionarie in mani di investitori americani come il fondo Knight Vinke).  In quella stessa regione Gazprom, sempre col concorso di Saipem (gruppo ENI) realizzò l’ardito gasdotto sottomarino Blue Stream che attraverso il Mar Nero connette la rete di pipeline russe con quelle turche aprendo la strada alle ambizioni russe per quanto riguarda la fornitura di gas naturale ai gasdotti in progetto attraverso i Balcani verso il mercato tedesco e italiano.

Sempre il peso delle forniture russe su questi due mercati, con l’aggiunta del terzo in ordine di importanza , quello francese, sembrano essere una delle cause della pressione USA su Ucraina e paesi dell’ex patto di Varsavia, come la Polonia, attraverso i quali transitano i due importanti  gasdotti che riforniscono Germania, Francia ed Italia.   I due paesi di transito sono stati incoraggiati a raffreddare fortemente i rapporti con la Russia, anche se ne dipendono integralmente per le forniture energetiche, in particolare l’Ucraina nel 2006 aveva avviato un contenzioso con i russi tale da provocare consistenti riduzioni delle forniture di gas verso i paesi UE.  La reazione di Tedeschi, Italiani e Francesi, dall’altro capo delle pipeline, denota che i tre grandi consumatori europei si sono sentiti in qualche modo minacciati dalla politica americana, la risposta dei tedeschi è stata la realizzazione di un accordo per la costruzione di un gasdotto sottomarino nel baltico, North Stream, in grado di collegare direttamente Russia e Germania senza paesi di transito; subito dopo  è stato annunciato l’accordo tra italiani, russi e bulgari per la realizzazione di South Stream che analogamente attraverserà il Mar Nero portando il gas russo sulle coste balcaniche della Bulgaria, dalle quali potrà proseguire verso Grecia e Italia, e verso Serbia, Ungheria e paesi di lingua tedesca, senza passare dalla Turchia, cosa che toglierebbe una delle ragioni fondamentali per cui gli europei mantengono in vita il processo di adesione dell’ingombrante vicino turco, che avrebbe così una importante carta in meno da giocare per la propria aspirazione europeista, la carta del transito energetico.  Sarà per questo che per entrare a pieno titolo nel gioco la Turchia potrebbe trattare con gli iraniani per importare gas naturale da dirigere eventualmente in Europa.  La Turchia è infatti il ponte naturale per il gas proveniente dal golfo persico, dove sono concentrate le maggiori riserve di gas non adeguatamente sfruttato del mondo; in particolare i grandi giacimenti di Iran e Qatar, ma anche quelli consistenti di Iraq e Arabia Saudita. L’Iran ha anche incaricato esperti del settore (tra cui la solita Saipem, dotata di apposite navi) di progettare un gasdotto sottomarino a largo del Pakistan per rifornire l’India; anche il Pakistan potrebbe beneficiarne ed essere collegato in cambio dell’appoggio al progetto stesso; questa opportunità energetica ha contribuito negli ultimi anni a migliorare molto la situazione sul fronte delle decennali contese tra le due potenze nucleari del Subcontinente indiano. Questi progetti non possono essere ben visti dagli USA che invece puntano sull’alternativa GNL, i paesi rivieraschi del Golfo dovrebbero, in questa visione, commerciare gas liquefatto, sotto la protezione/supervisione della flotta USA, con i tre grandi mercati; Europa, Nord America ed estremo oriente, il che permetterebbe di uniformare maggiormente i prezzi sui tre mercati.  Della stessa visione fanno parte i produttori come Nigeria e Australia, meno importanti ma utili per bilanciare geograficamente l’offerta di GNL, principalmente verso Europa e Nordamerica la prima e per l’estremo oriente la seconda.  Una Russia più accondiscendente, disposta ad esportare GNL verso il Nord America dando in concessione tutta la filiera dall’upstream al trasporto ad una major occidentale sarebbe stata la ciliegina sulla torta di questo grande progetto energetico e geopolitico cui la politica di Putin fin dal 2001 ha posto un serio ostacolo prima bloccando gli oligarchi eltsiniani filooccidentali che miravano a porre la Yukos sotto il controllo della Exxon Mobil, poi reagendo sempre più ostilmente alle capacità di Washington di manipolare la politica estera di paesi ex sovietici quali la Georgia e l’Ucraina, fino all’intervento militare in Ossezia, in cui le truppe di Mosca si sono attestate ad una distanza tale da poter direttamente minacciare la pipeline BTC.  Tale intervento ha posto le basi per nuovi assestamenti nella regione della ex URSS, ad esempio il crollo della coalizione filo occidentale in Ucraina.  Nei momenti più bui della crisi russa gli unici paesi ex sovietici rimasti vicino a Mosca erano la Bielorussia e l’Armenia. Ancora nel 2005 le repubbliche centroasiatiche dell’Uzbekistan e Kirghizistan  avevano ospitato basi USA che oggi non ci sono più; Fin poco prima del conflitto in Ossezia del 2008 esisteva il GUAM (Georgia-Ucraina-Azerbaijan-Moldavia) una alleanza militare antirussa proiettata fortemente verso la NATO, Dopo la guerra di Ossezia i due principali membri non sembrano più in grado di nuocere alla Russia, la Moldavia e l’Azerbaijan che hanno al proprio interno enclavi indipendentiste simili all’Ossezia: Transnistria e Nagorno Karabak hanno sicuramente preso atto della situazione. Questa tessera completa il mosaico dell’azione russa contro il progetto militar-energetico americano  ma la partita rimane ancora aperta, anche se sembra essersi spostata maggiormente sulle rive del Mediterraneo, altra cerniera dei canali energetici tra Nordafrica ed Europa, dove a seguito di un breve conflitto è stato rimosso il regime libico di Gheddafi, fornitore di idrocarburi per molti paesi europei ma considerato troppo vicino alle posizioni russe in fatto di geopolitica energetica.

KiteGen e la bottega tecnologica

Scritto da Mario Marchitti
Il progetto KiteGen presenta innumerevoli innovazioni e sfide tecnologiche che potrebbero generare nuove attività industriali (spin off in gergo); molti di queste meriterebbero di essere sostenute indipendentemente dalla funzione che svolgeranno nell’ambito del progetto. Il KiteGen mira a sfruttare i venti di alta quota attraverso vele/aquiloni/profili alari opportunamente vincolati e comandati da terra: una soluzione che, sebbene non introduce alcuna novità scientifica, necessita l’impiego di tecnologie e ritrovati che si pongono alla frontiera nel campo della ricerca applicata. Il gruppo e il luogo di lavoro dove attualmente si sviluppa il progetto può essere visto come una sorta di bottega tecnologica, dove chi ha ambizioni e interessi potrebbe trovare un fertile terreno per sviluppare e maturare professionalità di alto livello. Magari all’inizio si dovrà accontentare di una scarsa o nulla remunerazione, perché il progetto non gode di un adeguato sostegno, né da parte della grande industria, né da parte degli enti governativi, ma il guadagno come bagaglio di esperienza e conoscenze tecniche è sicuramente elevato, e in questa ottica l’impegno è sicuramente pagante, soprattutto per un giovane che si affaccia nel mondo della tecnologia e dell’industria.
Supercondensatori, nuovi cavi, nuovi profili alari, sensori e tecniche di controllo sono fra le tecnologie più importanti applicate al KiteGen:
- Il KiteGen non sarebbe concepibile senza la disponibilità di cavi in polimeri (Dyneema, Vectran) che  sono  più leggeri (circa la densità dell’acqua)  dei cavi in acciaio e circa dieci volte più resistenti a parità di sezione; questi cavi trovano sempre maggiori applicazioni, così come è avvenuto per la fibra di carbonio nella realizzazioni delle parti strutturali dei velivoli, ma anche nel settore del trasporto terrestre.  Comunque i limiti di impiego di questi cavi devono essere studiati ed esplorati, soprattutto per quanto concerne le adeguate protezioni e limiti di impiego riguardo all’usura. Si stanno anche studiando e valutando innovative caratteristiche aerodinamiche del cavo, per poterlo opportunamente sagomare per ridurre ancora più drasticamente la resistenza aerodinamica, soprattutto nella parte terminale, vicino al kite, dove le  velocità sono maggiori.
- Il controllo è indubbiamente la parte più importante, più difficile e più ambiziosa del progetto, soprattutto nella fase riguardante il decollo del kite, perché in questa fase il kite ha una corsa limitata nello spazio, inoltre  la sua velocità è minima o nulla. Ci si trova nella stessa situazione di chi va in bicicletta, dove l’equilibrio in partenza è precario e difficile da controllare. Il comando del kite viene effettuato principalmente azionando i cavi in modo differenziale, ma si prevede comunque di potenziare le manovre, soprattutto a bassa velocità, con due turbinette alle estremità dell’aquilone che forniscono un momento imbardante (che può essere assimilato alla funzione del piano verticale di coda degli aerei, che però è efficiente alle alte velocità. In effetti per migliorare la manovrabilità degli aerei di recente ci sono proposte per orientare la spinta del getto, con ugelli mobili). Il “motore” del controllo è lo stesso generatore, la cui azione deve essere modulata adeguatamente, sia come controllo passivo (aumentando o diminuendo il carico) sia come controllo attivo agendo in modo differenziale sui cavi. Il controllo con estrema precisione e rapidità effettuata con motori molto potenti, nell’ordine delle centinaia di kW, sono operazioni particolarmente impegnative dal punto di vista tecnologico.
- Fino a pochi anni fa la capacità dei condensatori difficilmente arrivava al Farad, mentre oggi sono già in commercio, a prezzi accessibili, condensatori con una capacità di oltre il migliaio di Farad. L’incredibile aumento di capacità consente di concepire il supercondensatore come buffer di energia, con diversi scopi nell’ambito del progetto KiteGen: per livellare l’erogazione dell’energia alla rete in quanto il KiteGen Stem singolo funziona alternativamente, con una fase attiva e una più breve passiva; e per fornire appunto l’energia necessaria al riavvolgimento dei cavi nella fase passiva. Fuori dall’ambito del KiteGen la tecnologia dei supercondensatori ha trovato applicazione come sistema di assistenza e recupero energetico (Power Hibrid Regenerator) e nel concetto di K-Bus a ricarica veloce (biberonaggio) L’elettonica di potenza per gestire l’uscita dei generatori ad alta frequenza con operazioni di raddrizzamento e successivamente di conversione in alternata adeguata alla rete è un ulteriore importante impegno tecnologico.
-Il Kite, l’aquilone, la vela, o il  profilo alare fin’ora utilizzati per i test sono stati reperiti sul mercato, che li produce per attività sportive e già anche per applicazioni industriali come SkySail. Sono realizzati con tessuti sintetici ad alta resistenza. Il loro rapporto portanza/resistenza non è molto alto: non si riesce ancora ad arrivare a un valore di 10, mentre gli alianti, che utilizzano ali rigide, presentano efficienze fino a 50. Una maggiore efficienza consente, a parità di potenza erogata, di ridurre la superficie del kite, quindi di migliorare la controllabilità del kite e di ridurre la sua sensibilità alle raffiche. L’ala rigida però non consente la manovra di scivolata d’ala o di messa in bandiera, per potere riportare l’aquilone a bassa quota e ricominciare il ciclo di produzione. La soluzione che ora viene studiata è l’ala bimodale, rigida in corda per ottenere un’alta efficienza, e flessibile in apertura per permettere le manovre di recupero. L’ala bimodale (con sezioni o cassonetti in carbonio uniti da elastomeri)  è in fase di progetto, e un adeguato supporto esterno da parte di laboratori con gallerie del vento sarebbe benvenuto.
- Come per gli aerei anche per il progetto KiteGen c’è la necessità di monitorare istantaneamente gli assetti (angoli e posizioni) le velocità e le accelerazioni. Nel caso del kite però non ci si può servire delle costose e pesanti piattaforme inerziali (i giroscopi) comunemente usate per gli aeromobili, ma ci si deve servire di sensori leggeri, poco ingombranti e con basso assorbimento di potenza elettrica. Attualmente questa sensoristica, cosiddetta strap down, è costituita da accelerometri, girometri e magnetometri. I loro segnali devono essere opportunamente combinati con sosfisticate tecniche matematiche, che in parte erano già presenti nel sensore SeTAC precedentemente sviluppato.

Risposta al Max Planck Institute

In questa nuova categoria ripubblichiamo articoli ed eventi precedenti alla creazione di questo blog, per i nuovi lettori che li avessero persi.

Massimo Ippolito di KiteGen risponde all’improvviso affastellarsi di voci allarmate e preoccupate per l’avvenuta segnalazione su Quale Energia di uno studio, eseguito presso il Max Planck Institute, che sembrerebbe mettere in crisi il concetto stesso di eolico di alta quota o troposferico.

Tullio de Mauro ci informa, dalle pagine del Corriere, che il 71 per cento della popolazione italiana si trova al di sotto del livello minimo di comprensione nella lettura di un testo [italiano] di media difficoltà. E poiché quindi, purtroppo, quello studio del Max Planck può essere compreso, valutato criticamente e letto tra le righe da percentuali omeopatiche di cittadini medi, chiedo perdono per la franchezza, accompagnata da un certo disagio, che mi vedo costretto a usare. Siamo infatti di fronte ad un lavoro assai criticabile, come vedremo, e francamente stupisce la disponibilità a pubblicarlo da parte di Earth System Dynamic e quella a rilanciarlo da parte di Quale Energia (che peraltro ci ha cortesemente offerto un diritto di replica).

Chi è abituato a leggere pubblicazioni scientifiche resterà sicuramente sorpreso dallo stesso titolo del paper, “Jet stream wind power as a renewable energy resource:little power, big impacts” che ne preannuncia lo spirito inspiegabilmente aggressivo. Nel paper stesso, poi, ogni paragrafo dedica uno spazio esagerato, e senza ragionamenti di supporto, a ripetere apoditticamente ciò che è stato espresso nel titolo e che viene ribadito nelle conclusioni.

I lavori, per esempio, dell’IPCC hanno abituato tutti a vedere ogni previsione prodotta da un modello corredata da una barra di incertezza. Mentre ci risulta arduo considerare un segno di serietà scientifica già la sola affermazione, contenuta nel paper Max Planck, che si possa estrarre esattamente 7,5 TW dall’atmosfera, senza offrire a chi legge delle opportune barre di errore; barre che sono ottenibili, nel ciclare il modello, variando le assunzioni nel loro ambito di plausibilità.

Stimano solamente 7,5 TW, ma a ben vedere non è affatto poco!Paradossalmente, lo studio dei ricercatori del Max Plank Institute, pur eseguito utilizzando argomenti che dimostreremo errati e pur posizionandosi, fra centinaia di altre valutazioni della risorsa vento, come la meno generosa in assoluto, è in sostanza un’ulteriore conferma della validità del KiteGen e più ampiamente dell’eolico di alta quota. Perché esso afferma che col solo eolico di alta quota si può estrarre in modo sostenibile molto di più del fabbisogno mondiale primario di energia, anche se lo afferma in polemica diretta con un recente lavoro più ottimistico di Ken Caldeira e Christina Archer,  nel quale quel “di più” è stimato in 100 volte.

Cito infatti dalla loro pubblicazione: “Our estimate for maximum sustainable extraction of kinetic energy from jet stream is 7.5 TW” (“La nostra stima per la massima e sostenibile estrazione di energia cinetica dal jet stream è di 7,5 TeraWatt”). Tuttavia tale pur pessimistico limite di 7.5 TeraWatt, della nobile e preziosa energia elettrica, è di gran lunga superiore all’intero fabbisogno umano primario! Fabbisogno che oggigiorno si attesta in 14 TW fossili, e quindi termici, dei quali molto meno della metà si trasforma in servizi energetici utili. Una centrale elettrica a carbone consuma circa il triplo di energia termica rispetto all’elettricità erogata e un’automobile brucia e disperde cinque volte l’energia termica del carburante rispetto all’energia meccanica che arriva effettivamente alle ruote. Quasi tutto il nostro uso di energia è affetto da queste ineludibili proporzioni di spreco. Di conseguenza si può affermare, senza timori di smentite, che il fabbisogno umano attuale, di potenza, è ampiamente sotto i 6TW (da moltiplicare per le 8760 ore, per ottenere il fabbisogno di energia su base annua), se fissati già nella nobile forma elettrica o meccanica anziché termica.

Potenza o energia? Questo è il problema

Entriamo ora nel merito del lavoro.

Chi si occupa professionalmente di energia condivide con me la sensazione oppressiva del dover subire la continua e diffusa confusione fra i concetti distinti di potenza e di energia. E anche a pag 202 del paper in questione l’intero primo paragrafo mescola ripetutamente ed ineffabilmente i due concetti. Qui un esempio: ” If we take the present global energy demand of 17 TW of 2010 (EIA, 2010), then this estimate would imply that 1700 TW of wind power can be sustainably extracted from jet streams. However, this estimate is almost twice the value of the total wind power of 900 TW (Lorenz, 1955; Li et al., 2007; Kleidon et al., 2003;Kleidon, 2010) that is associated with all winds within the global atmosphere.

L’attuale domanda di energia è, secondo gli autori, di 17 TW, che però misurano una potenza, chiaro (ma solo agli addetti ai lavori) che volessero intendere la potenza media assorbita dalle utenze planetarie durante un anno, ma espresso con una superficialità che non è ammissibile per uno studente del liceo durante un’interrogazione, figurarsi per un team di ricercatori, il quale avrà peraltro avuto modo di rileggere più volte il lavoro prima di rilasciarlo. Inoltre affermare che la potenza totale del vento è di 900 TW è una forzatura del concetto fisico: non esiste potenza in un fluido, semmai esso è dotato di energia. Al limite, si potrebbe provare a valutare l’energia posseduta dal regime stazionario atmosferico, che però si misura in migliaia di TWh (TeraWattOra). Quei 900 TW, se mai, potrebbero essere la potenza che il sole trasferisce all’atmosfera e che si trasforma in forma cinetica oppure la potenza che l’atmosfera perde continuamente in calore con l’interazione con il suolo e nei fenomeni di attrito tra i vari flussi. Dovrebbe bastare questo per riconsiderare che esistono molti approcci di maggiore qualità e certamente di superiore interesse sul tema:

ENERGIA

Brunt(1939) calcola in 100PWh l’energia cinetica totale dell’atmosfera.

POTENZA DISSIPATA IN ATMOSFERA

Gustavson (1979) calcola 3600TW di dissipazione media totale, (inoltre conferma i dati di Brunt),

Gustavson (1979) 1200TW di dissipazione entro il boundary layer con l’orografia del territorio e il trasferimento di energia ai mari,

Lorenz (1967) 1270TW, Skinner (1986) 350TW, Peixoto and Oort (1992) 768TW,  Sorensen (1979 e 2004) 1200TW, Keith et al. (2004) 522TW, Lu et. al., (2009) 340TW, Wang and Prinn (2010) 860TW.

Le differenze fra i risultati di cui sopra sono motivabili da analisi che parzializzano su flussi ordinati, puramente orizzontali e potenzialmente sfruttabili, ma sostanzialmente tutti gli autori sono abbastanza concordi sugli ordini di grandezza.

SFRUTTAMENTO DELLA RISORSA

Gustavson (1979) ritiene che possano essere sfruttati 130 TW – il 10% di ciò che viene dissipato naturalmente – con già un’espressa attenzione al clima da parte dell’autore; che per me rimane il più credibile, colui che ha detto e capito tutto ciò che c’era da dire e capire. Un altro ottimo lavoro è quello di Sorensen, che si sovrappone quasi perfettamente a quello di Gustavson

Tornando alla confusione tra potenza ed energia sul paper di L. M. Miller, F. Gans and A. Kleidon , bisogna essere veramente indulgenti ed approssimativi per accettare queste formulazioni :

<<Archer and Caldeira (2009) estimated the potential of jet stream wind power as “…roughly100 times the global energy demand”. If we take the present global energy demand of 17TW of 2010 (EIA, 2010), then this estimate would imply that 1700TW of wind power can be sustainably extracted from jet streams. However, this estimate is almost twice the value of the total wind power of 900TW(Lorenz, 1955; Li et al., 2007; Kleidon et al., 2003; Kleidon, 2010) that is associated with all winds within the global atmosphere.

Here we resolve this contradiction between the energy that can maximally extracted from the jet stream Sect. 4 in terms of differences in velocity and dissipation rates, the limit on how much kinetic energy can maximally be extracted, atmospheric energetics. The contradiction originates from the erroneous assumption that the high wind speeds of the jet streams result from a strong power source. It is well known in meteorology that jet streams reflect quasi-geostrophic flow, that is, the high wind speeds result from the near absence of friction and not from a strong power source.>>

1) Vi si “accusano” artificiosamente Archer e Caldeira di dire che 1700 TW sono sostenibili, mentre il vero significato è che essendoci un potenziale pari a 100 volte la domanda globale, l’estrazione risulta particolarmente copiosa anche da una singola geolocalizzazione, e che per ora possiamo lasciare passare indisturbato ciò che non raccogliamo. Inoltre la stima di Archer e Caldeira non si riferisce ai soli jet stream.

2) Vi si cita un TOTAL WIND POWER, associato a tutti i venti dell’atmosfera, e non un dato di potenza media, mediata o al limite di TW anno; il che è un errore grave.

3) Vi si indica una massima energia che può essere estratta; cosa che non ha alcun significato se non con un senso molto traslato di energia, ovvero di potenza.

4) Vi si indica la massima energia cinetica che può essere estratta; cosa che avrebbe un significato solo se vi fosse stato aggiunta, anche solo lessicalmente, una base di tempo.

5) Inoltre l’assenza di frizione è un falso. Infatti sappiamo che in atmosfera si perdono globalmente 7W al mq, di cui 2,5 W mq sono la parte eventualmente a disposizione dell’eolico (da non confondere con i 700W al mq medi, disponibili localmente, quale sommatoria di raccolta nel grande cardioide sopravvento ai generatori).

Ragionando attentamente, l’intento degli autori di forzare insieme diversi concetti, anche al rischio di apparire superficiali, appare poco chiaro, e sicuramente poco scientifico dando peraltro adito al sospetto di voler attaccare ad ogni costo il concetto di eolico di alta quota.

Ma in realtà nessuno di buon senso ha mai pensato di sfruttare direttamente il Jet Stream

Il Jet Stream alimenta immagini e sogni sproporzionati. Per cui si nota spesso, quando si tratta di energia eolica, una sorta di prouderie intellettuale a volerne forzatamente dissertare.
Effettivamente la velocità media del vento a quelle quote è di 90 nodi medi, un equivalente di circa 16 kW al metro quadrato di fronte vento, con dei picchi frequenti di oltre 100 kW al metro quadro. Un’ipotetica ventolina di soli 20 cm di diametro, immersa nel jet stream, potrebbe davvero alimentare abbondantemente un’abitazione tutto l’anno, sia di giorno che di notte.

Però una macchina che si immerga nel pieno del Jet Stream, a 9000 metri di altezza, è difficile perfino da immaginare. Solo fantasie tecnologicamente immature possono ipotizzare di sfruttare direttamente quel possente quanto ingestibile flusso. L’eolico di alta quota, in tutte le sue forme, si indirizza invece al flusso residuale, quello che si propaga dai jet streams e scende a quote relativamente più basse ed è destinato a frangersi e disperdere energia in calore tra le cime delle montagne, le foreste e l’orografia del territorio. Si deve pensare che gli estensori del paper non lo sapessero ? Cioè che criticassero una tecnologia pur ignorandone perfino le basi? Trattasi di un dubbio lecito e nel contempo alquanto inquietante.

E ancora, i lavori di Christina Archer e Ken Caldeira , che sono citati nello studio a preteso sostegno, non si concentrano invece affatto sull’ipotesi di sfruttamento del jet stream. L’atlante dei venti di alta quota che essi hanno pubblicato prende infatti in esame tutte le latitudini e longitudini alle varie altezze; per cui è inaccettabile che sia attribuito loro una focalizzazione esclusiva sul jet stream.

La magia insita nelle macchine che intendono sfruttare l’eolico troposferico è proprio la possibilità di modulare l’altezza operativa in modo da trovare sempre una brezza non troppo forte né troppo debole, col fine primario di fare concorrenza alla stabilità ed alla costanza delle centrali termiche, che convertono l’energia fossile provvidenzialmente accumulata nei milioni di anni dal nostro pianeta.

L’eolico di alta quota presenta inoltre il vantaggio di trovare concentrata questa energia approssimandosi al regime stazionario atmosferico; al quale si può accedere praticamente da qualunque luogo della superficie terrestre, senza richiedere di dispiegare centinaia di migliaia di installazioni sui territori. Ciò che c’è di positivo nel fatto di avere quella enorme risorsa energetica accumulata nei jet stream, non può certamente essere l’immaturo ed inutile proposito di estrarne migliaia di TW, ma è la consapevolezza di poter cogliere il vantaggio di una macchina che può attingere ovunque dalle perdite di quel serbatoio energetico per soddisfare auspicabili specifiche di funzionamento e di potenza erogabile.

Il limite di Betz

A pagina 206 del paper è citata la legge di Betz ed il suo limite al 59,3%. E le formulazioni matematiche di Betz descrivono effettivamente la metodologia per frenare al meglio il flusso del vento al fine di estrarre energia. Esse permettono cioè di capire che il vento non è da sfruttare a fondo perché deve fluire attraverso la macchina eolica senza perdervi tutta la velocità e l’energia posseduta. Condizione indispensabile per ottenere il migliore risultato.

Però le leggi di Betz sono preziose per le turbine eoliche, che hanno un fronte vento intercettabile limitato dalla dimensione delle pale in rotazione; per cui il vento elaborato mantiene in ogni caso l’energia residua che non viene convertita dalla macchina. Nel caso invece dell’eolico troposferico di tipo ground-gen (generatore a terra), quelle leggi perdono gran parte della loro importanza poiché il fronte vento intercettabile è decine di volte superiore a quello delle pale eoliche e quindi la velocità del vento viene ridotta solo leggermente.
Gli autori del paper forzano il cosiddetto limite di Betz, con l’intento scoperto di affermare che la massima potenza cinetica estraibile è 7,5 TW e che quindi, a causa del limite di Betz, la potenza elettrica è di 4,5 TW. Ma questo non è vero perché, se la potenza cinetica estraibile fosse effettivamente limitata a 7,5 TW, le macchine eoliche dovrebbero elaborare vento per 12 TW lasciando fluire preservati 4,5 TW, assolvendo in pieno alla specifica di sottrarre solo 7,5 TW cinetici.

Modelli matematici

Spesso si sente dire che la scienza e gli scienziati sono divisi nel decifrare vari argomenti, come per esempio succede per i modelli che descrivono il caos climatico e la responsabilità antropica.
Molti politici non vogliono più sentir parlare di modelli, probabilmente perché hanno assistito a dimostrazioni di tesi opposte brandite con altrettanti modelli a supporto. Ebbene, è un vero peccato poiché l’essenza della politica degli statisti dovrebbe essere quella di prevedere il futuro con sufficiente anticipo per reagire correttamente.

Penso di aver focalizzato abbastanza chiaramente il principale fattore comune dei guasti cognitivi e comunicativi su molti argomenti di una certa complessità. Si tratta di differenti percezioni e interpretazioni dei fenomeni dinamici e retroattivi. Posso anzi dire che si nota una netta linea di demarcazione tra chi studia, percepisce ed è consapevole di fenomenologie multivariate con il loro corredo di forzanti e retroattività, e chi percepisce la scienza ed i suoi fenomeni con rappresentazioni statiche o semplici proiezioni tendenziali, come succede nel mainstream degli economisti o dei demografi.. Purtroppo, è possibile confezionare i cosiddetti modelli previsionali con entrambe quelle mentalità, ma con ben diversi risultati qualitativi.

Il lavoro di L. M. Miller, F. Gans and A. Kleidon rivela appunto una scarsa conoscenza della dinamica dei sistemi. Infatti, pur dichiarando di aver utilizzato un modello matematico ad elementi finiti, lo hanno applicato spalmando ovunque e forzatamente un freno fluidico quale emulazione di macchine eoliche di alta quota. Un errore marchiano, che risulta evidente pensando che le macchine eoliche devono avere necessariamente una geolocalizzazione, mentre tale aspetto è stato da loro completamente ignorato,
Se i potenti flussi di vento di alta quota sono così mobili per quasi mancanza di attrito, un eventuale ostacolo puntuale verrebbe in buona parte aggirato, creando scenari dinamici inediti, ma modellizzabili con approcci più rigorosi.

Qui ho riprodotto un’immagine a dimostrazione che, mentre scrivevo, su Inghilterra, Francia, Italia e fino alla Grecia era presente un vento di oltre 200 km/h. Come si può notare, questi flussi accelerano, frenano e deviano, coinvolgendo immense masse d’aria a grande velocità e con grandi accelerazioni, in evoluzioni che in poche ore presentano configurazioni completamente differenti e grandi scambi e dissipazioni di energia.

Basti pensare all’energia veicolata da un vento come il foehn, frequente in Piemonte, che nel mentre deposita in scioltezza miliardi di tonnellate di neve sulle Alpi, riesce in pieno inverno ad elevare la temperatura di una intera regione a livelli estivi.

Per dare un’indicazione quantitativa, risultante dall’immagine, l’Italia era investita da una potenza eolica di oltre 200 TW, pari a circa 15 volte il fabbisogno mondiale primario. Qui posso appropriatamente parlare di potenza perché ho definito un’area (il fronte vento sulla penisola italiana) ed un riferimento temporale (l’istante cui l’immagine si riferisce). Lo studio di queste dinamiche atmosferiche emblematicamente ripropone le difficoltà citate. Eppure c’è chi pensa di poter mettere giù una manciata di equazioni, che a gamba tesa intervengono in un modello; e pretende di ottenere risultati sensati.
Ipotizzare un limite di sfruttamento di pochi TW rappresenta per ora un più che comodo, ampio e direi comunque condivisibile obiettivo, fino a quando si potrà confermare, con lavori di modellizzazione rigorosi, che più si sfrutta il vento troposferico e più vento troposferico sarà disponibile. Una risorsa forse autofertilizzante, insomma.

L’anticipata sottrazione di energia cinetica da parte delle macchine eoliche, infatti, fa abbassare la temperatura anche di parecchi centesimi di grado nei cardioidi sottovento dell’atmosfera. E i differenziali termici, insieme al contenuto di vapore, sono il grande motore dei venti.
La maggior parte dello sfruttamento, per ragioni geografiche e di popolazione, insisterà sulle celle di circolazione atmosferica di Ferrel, che rappresentano un colossale corto circuito energetico tra le celle di Hadley e le celle Polari. Sottrarre energia a queste celle di circolazione atmosferica può significare vedersela restituire integralmente dalle dinamiche circostanti.

Le Istituzioni, dove sono?

Dopo questa indispensabile critica del lavoro proveniente dal Max Plank Institute, finalmente si condividono gli elementi per affermare, senza apparire esagerati, che dalla sola Italia, grazie alla sua posizione trasversale ai grandi flussi pseudo geostrofici, si potrebbe facilmente estrarre 1 TW continuo di potenza, ovvero oltre 8000 TWh di energia annui. I quali, trasformati prosaicamente in denaro, equivarrebbero ad una produzione netta di ricchezza puramente endogena stimabile in 800 miliardi di euro l’anno…. Roba da far impallidire tutte le inique manovre finanziarie che i governanti ci stanno imponendo.

Qualche decina di grandi macchine eoliche o kitegen farms, distribuite da Nord a Sud, farebbero tutto il lavoro senza preoccupazioni di intermittenza, e a forse nemmeno un decimo del costo che avrebbe avuto il nostro nucleare.

Il fatto di scrivere e dimostrare percorsi progettuali credibili ci ha procurato la promessa (ma solo quella) di finanziamenti pubblici per un totale complessivo di 78 milioni. Abbiamo partecipato ai bandi per la ricerca e l’innovazione, e le commissioni si sono sempre entusiasmate del progetto; al punto che molti valutatori tecnici e strategici si sono sentiti in dovere di complimentarsi personalmente col sottoscritto. Mi ricordo di Zorzoli, Clini, Silvestrini, Degli Espinosa, Pistorio… Poi, regolarmente, i fondi sono stati bloccati e i responsabili trombati; oppure la pratica è finita in mano a burocrati lunari. Degli Espinosa e in particolare Pistorio all’epoca di “Industria2015” si erano convinti saggiamente, che almeno un KiteGen, realizzato su scala industriale, bisognasse assolutamente vederlo.

Consumare copiosamente energia da fonte rinnovabile è l’unico ed inedito motore primario e credibile per l’economia del futuro, ma sembra che un sentimento di impotenza e nichilismo imperino e che chi potrebbe darci una mano preferisca vedere il collasso.

Massimo Ippolito

Test

Kite Steering Unit 1 durante i test
Di Andrea Papini
Molti lettori ci chiedono qualche dettaglio in più sui test eseguiti.  Iniziamo per ordine ed illustriamo i risultati che furono ottenuti dal primo prototipo, in seguito sarà più chiaro in successivi post il lavoro che stiamo svolgendo adesso.   I test necessariamente seguono ad ogni fase di progettazione, in particolare per una macchina innovativa e mai fino ad ora concepita ad un tale livello di dettaglio.   I test di validazione della tecnologia KiteGen sono iniziati fin dal 2006, quando un primo prototipo denominato Kite Steering Unit 1 o in breve KSU1 ha dimostrato fondamentalmente che è possibile produrre energia dai venti d’alta quota (fu raggiunta l’altezza di 800 m AGL ovvero sul livello di campagna) con un ciclo YO-YO ovvero costituito da:
  • una fase attiva in cui il kite srotola i cavi azionando gli alternomotori in modalità alternatore e producendo energia fino a raggiungere una quota massima
  • un ciclo passivo in cui gli alternomotori agiscono da motori e riportano il kite alla quota minima di operatività consumando una frazione inferiore al 5% dell’energia prodotta nella fase attiva, per poi ricominciare.
I “test” comprendevano quelle che, in parole povere, vengono chiamate “ore di volo”. In termini leggermente più tecnici le “ore di volo” possono essere classificate in diversi tipi di “test di manovre di volo”. Ad esempio: “test di decollo”, “di produzione di potenza elettrica”, “di sicurezza in caso di raffica”; “di passaggio alla scivolata d’ala”, “di scivolata d’ala” ecc. I test comprendono anche alcune operazioni a terra per cambiare il set-up dell’ala, i cavi e alcune variabili della KSU.
Vorrei anche rimarcare che i test sulla KSU sono stati di tipo booleano ossia si sono focalizzati sulla ripetizione e l’ottimizzazione di ogni singola manovra. Per quanto siano stati eseguiti anche dei test sull’intero “ciclo yo-yo” (che è l’unione delle varie manovre) questi non erano l’oggetto principale dello studio perché prima di testare un sistema complesso, è buona prassi testare i moduli del quale è composto. I risultati dei test booleani hanno dimostrato l’effettiva potenzialità produttiva di energia elettrica (grande successo del modulo “manovre per la produzione di potenza elettrica” ), ma hanno anche evidenziato che il prototipo KSU era inadeguato ad eseguire i test di ciclo yo-yo, per due motivi principali:
  • l’impossibilità di gestire in sicurezza il kite in caso di forti raffiche di vento (problemi nel modulo “manovre per sicurezza in caso di raffica”);
  • l’impossibilità di disperdere il calore accumulato nelle pulegge del KSU.
A quel punto era necessario riprogettare il generatore in modo che risolvesse quei problemi. Visto che le potenzialità produttive erano state dimostrate con successo, per accorciare i tempi (time to market) è stato scelto di puntare direttamente ad un prototipo preindustriale. Quindi:
  • è stata progettata una nuova struttura ad igloo ed uno stem per ammortizzare meccanicamente quelle raffiche che non era possibile gestire elettronicamente;
  • è stato modificato e ridimensionato il sistema di tamburi e pulegge con un sistema di raffreddamento.
E’ nato quindi il “KiteGen Stem”, con il quale è ora possibile:
  • testare le “manovre in sicurezza in caso di raffica” con l’ausilio dello stem;
  • verificare che il sistema di raffreddamento sia efficace (è stato abbondantemente sovradimensionato in fase progettuale);
  • testare il nuovo “modulo di decollo automatico” (test attualmente in corso);
  • solo a questo punto, quando dopo che ogni modulo è stato validato sul generatore preindustriale, si passerà a concentrarsi sui test del ciclo yo-yo in modalità continuativa.

Tradotto in “parole povere” significa che i test sul ciclo inizieranno quando sarà già stato verificato che il KiteGen Stem è perfettamente funzionante (e per di più è già un modello industriale). Questi test finali serviranno esclusivamente per ottimizzare la producibilità e raffinare il sistema nel suo complesso.

Carbo-Kite

Di Marco Ghivarello

Progettista CAD KiteGen [nonchè pilota entusiasta di alianti, paramotori e qualunque altra cosa che abbia una lontana probabilità di volare, NdR]

Da Gennaio 2012 è iniziata la costruzione della nuova ala semirigida in fibra di carbonio il cui obiettivo  è di incrementare le prestazioni delle attuali vele da kite con cui saranno effettuate peraltro le prime prove.

Gli effetti di un incremento della efficienza a parità di peso sono esponenzialmente crescenti, aumenta la velocità massima e la forbice rispetto alla minima, con una W min. verticale di sostentamento che sarà inferiore, consentendo un incremento delle ore / anno di produzione energetica ed una migliore gestibilità dei carichi di raffica dovuti alla minore superficie alare.

La grande sfida – peraltro non così apparentemente fattibile a chi opera unicamente nel settore dell’aviazione convenzionale – è riuscire a creare un ala in grado di tenere enormi sollecitazioni, ma con una leggerezza quasi paragonabile a quello di un parapendio, ed al contempo semi-rigida con concetti assimilabili alle ali di aliante (noi abbiamo il vantaggio di non presentare superfici parassite quali fusoliera ed impennaggi e non vincolarci ai profili che abbiano gli spessori % necessari ad alloggiare convenzionali longheroni) e in grado di flettersi al fine di realizzare la manovra di “side sleep”, fondamentale per il recupero della stessa.

Con questo preliminare prototipo abbiamo pertanto definito una nuova tecnologia  realizzativa che unisse i due mondi, quello delle ali convenzionali e quello delle ali flessibili (parapendio-kite surf), e abbiamo un programma di test molto fitto, ove si sperimenteranno flessibilità, carichi, tenuta a trazione, telemetria prestazioni, affinamenti aerodinamici, sistemi automatici di variazione d’assetto, a seguire affidabilità delle tecnologie utilizzate, ecc. ecc.. Con i successivi prototipi si lavorerà sull’efficienza attraverso lo studio di configurazioni più estreme, rese possibili da un pilotaggio attivo gestito dal controllo predittivo del KiteGen.

Kitegen su Il sole 24 ore

Il sole 24 ore segue sempre con molta attenzione il KiteGen come testimonia l’articolo di oggi a firma di Paolo Magliocco.  In precedenza l’argomento era stato trattato in numerosi articoli

Panorama Theme by Themocracy