Finanziamenti pubblici alla ricerca KiteGen, una doverosa rettifica

A volte si è contenti di dover rettificare alcune affermazioni fatte in passato.

Più volte esponenti di KiteGen, in varie sedi e negli ultimi anni, hanno lamentato di aver collezionato le ammissioni al finanziamento in numerosi bandi italiani per progetti di ricerca collezionando potenzialmente fino a 78 milioni di euro, ma di non aver ancora ricevuto altro che poche briciole di questo gran totale.

Ebbene queste affermazioni non sembrano più corrette perchè recentemente la Regione Piemonte ha comunicato che con delibera di giunta n. 28-4663 (PAR FSC 2007-2013- DGR n. 37 – 4154 del 12 luglio 2012 si sono sbloccati i finanziamenti dei progetti di ricerca , di cui alla misura II.3 “Regime d’aiuto per la qualificazione e il rafforzamento del sistema produttivo piemontese” del Piano straordinario per l’occupazione, ammessi in graduatoria, ma allo stato non ancora finanziati, come da valutazione di merito (DGR n. 18-2173 del 13 giugno 2011).  L’importo di contributo massimo concedibile riconosciuto in favore del progetto di ricerca KITEGEN WINGS & POWER è pari ad € 1.008.166,01

Pertanto il gran totale dei finanziamenti mai erogati non sarebbe più 78 ma 77 milioni.   Le vicissitudini di questo finanziamento sono esemplari:

La richiesta totale per il progetto Kitegen Wings & Power, che si focalizza su aspetti relativi alla progettazione di ali e problematiche di interconnessione alla rete elettrica, era stata di euro 7.724.463 con un contributo regionale stimato di euro 5.243.482 ed un cofinanziamento (KGR) di euro 2.480.980.
Dalla prima assegnazione di circa 10.000.000 eravamo rimasti “fuori” come terzi ammessi ma non finanziati in quanto i soldi erano FINITI.
Alla seconda assegnazione di circa 10.900.000,  essendo ancora largamente insufficiente rispetto ai progetti ammessi, la somma disponibile è stata ripartita su 20 soggetti.  Anche avendo intercettato quasi il 10% della provvista siamo ancora solo al 20% di quanto richiesto.
Spero vivamente di dover procedere ad ulteriori rettifiche di questo tipo in futuro.

Valutazione della SEN

E’ scaduta il 30 Novembre 2012 la consultazione pubblica sulla Strategia Energetica nazionale o SEN.
Diamo atto al Governo, anche se ormai dimissionario, di aver tentato una rottura con il passato dando il giusto peso all’energia dopo anni di disinteresse e facili slogan da parte della politica (chi si ricorda del Rinascimento Nucleare?).  Dopo 24 anni il MISE era al lavoro per l’emissione di un nuovo Piano Energetico Nazionale accettando contributi anche da attori diversi da quelli che in genere vengono consultati in audizioni più o meno pubbliche dal Parlamento o nelle sale del ministero.  E’stato possibile infatti, inviare le proprie osservazioni compilando un questionario appositamente predisposto sul sito del MISE
Tuttavia è lecito esprimere dubbi sulla reale incisività di tali contributi sulla successiva stesura definitiva del SEN, semmai ve ne sarà una visti gli ultimi accadimenti politici.  Innanzitutto il documento posto in consultazione è ampio, complesso, composto da luci ed ombre.  Ambiguo sui alcuni punti e chiarissimo su altri.  Le ossevazioni sono, al contrario, accettate su 24 puntuali questioni che, pur affrontando i temi principali, non consentono al commentatore di esprimere un contributo critico coerente ma tendono a frammentarlo in un insieme di asserti molto specialistici incanalandolo su un sentiero predefinito dalle linee guida ministeriali.
Sebbene in un primo momento avessimo pensato di rispondere al questionario, in considerazione del fatto che le proposte di KiteGen in merito alle strategie energetiche nazionali sono per loro natura organiche e coerenti e già delineate da tempi non sospetti, di molto precedenti alla decisione di progettare una SEN, abbiamo preferito non farlo e plaudire all’iniziativa di ASPO Italia, che risposto ad alcune delle questioni poste dal SEN, in particolare segnalando quella che dal punto di vista KiteGen è la lacuna più evidente, ovvero la mancanza dell’eolico troposferico tra le tecnologie energetiche innovative considerate d’interesse strategico nazionale.
Alla frammentazione imposta dal questionario SEN vogliamo comunque contrapporre la nostra valutazione della strategia energetica del MISE e la nostra visione che risulta alternativa su numerose tematiche.
La SEN è architettata su 7 tematiche fondamentali, Efficienza energetica, Mercato nazionale del Gas e ruolo di HUB Sudeuropeo, Sviluppo energie rinnovabili, Sviluppo infrastruttura e mercato elettrico, Ristrutturazione di Raffinazione e Distribuzione carburanti, Produzione nazionale di idrocarburi, Modernizzazione del sistema di Governance.
Su tutte incombono gli audaci obbiettivi che si vorrebbero traguardare, che superano quanto richiesto all’Italia nell’ambito del pacchetto UE Clima Energia o 20-20-20 che richiede al Paese entro il 2020 una riduzione del consumo di energia primaria del 20% rispetto al trend calcolato in assenza di misure correttive, una riduzione del 18% delle emissioni di gas serra rispetto al dato 2005 (575 MTon CO2eq) ed una percentuale del 17% del consumo energetico coperto da fonti rinnovabili.  Il MISE fissa i seguenti obbiettivi:
1) Riduzione del 24% rispetto ai consumi energetici attesi al 2020 in assenza di mitigazione (209 MTep)
2) Quota rinnovabili su consumo totale 20% (dal 10% del 2010)
3) Riduzione gas serra del 19% (da 575 MTon CO2 eq del 2005 a 466)
Tutto ciò dovrà avvenire contemporaneamente ad una riduzione delle bollette energetiche a livelli europei (-20% per il gas e -40% per l’energia elettrica), alla trasformazione del paese in un HUB del gas in grado di veicolare verso il nord europa alcuni miliardi di metri cubi annui di gas naturale ed all’alleggerimento del costo delle importazioni di materie prime energetiche di 14 mld euro rispetto ai 62 attuali
Sostanzialmente tutto ciò implica che al 2020 i consumi energetici nazionali dovranno ridursi dai 165 MTep del 2010 a 155-160 MTep mentre i consumi lordi di energia elettrica dovranno crescere dai 346 TWh del 2010 ai 360 per favorire la decarbonizzazione dei settori civili e trasporti mediante la sostituzione di fonti fossili con climatizzazione a pompa di calore e trazione elettrica e che la produzione domestica di idrocarburi dovrà raddoppiare.  Inoltre le infrastrutture del gas (rigasificatori, gasdotti, stoccaggi) dovranno essere potenziate e l’assetto delle società di gestione corretto in modo da favorire la concorrenza.  Quest’ultimo impegno è considerato fondamentale poichè dal maggiore prezzo del gas sul mercato italiano discende anche il maggiore costo del kWh essendo la maggior parte della produzione termoelettrica generata da impianti che utilizzano tale combustibile.  Si fa anche troppo affidamento sull’eventualità che l’aumento di produzione di idrocarburi in Nordamerica, legato al fracking ed allo sfruttamento di risorse non convenzionali possa beneficiare presto anche l’europa. Gli squilibri, attualmente presenti sui mercati regionali del gas, stanno abbassando il prezzo spot del GNL perchè gli Usa, grazie al fracking, non importano più GNL che ora viene piazzato sottocosto in Asia ed Europa (a chi ha le infrastrutture di rigasificazione ovviamente, il cui sviluppo quindi occupa in SEN un posto d’onore).  Gli effetti di tali squilibri saranno duraturi o solamente temporanei?  I maggiori costi economici ed ambientali di estrazione del gas non convenzionale dovranno presto o tardi emergere.  La scommessa su gas abbondante a basso prezzo è quantomeno ingenua.  Le risorse non convenzionali sono ingenti ma saranno messe sul mercato a prezzi compatibili con i loro alti costi di estrazione e di accettabilità sociale.  Pertanto il progetto di sviluppo del gas naturale presente in SEN è certamente strategico ma va ridimensionato su due aspetti.  E’giusto diventare un paese di transito e diversificare le modalità di approvvigionamento troppo sbilanciate sul pipeline ma è necessario tenere conto della maggiore sicurezza energetica garantita dai contratti take or pay e dalle pipeline, in particolare quelle non passanti per paesi di transito con un passato di ricatti energetici.  Tale sicurezza si paga con una minore flessibilità.  La raccomandazione per il MISE è di mantenere questo tipo di fornitura per una percentuale di volume di gas compatibile con i consumi interni ed affidarsi allo spot per una percentuale simile ai volumi che si pianifica di esportare verso il nordeuropa tramite il gasdotto transitgas.  Pertanto le azioni da intraprendere potrebbero essere:
1) collegamento diretto con Balcani e Turchia per potersi allacciare al south stream e/o a flussi di gas provenienti dal Caspio e dal Golfo Persico.
2) Ridimensionamento della capacità di rigasificazione da aggiungere agli attuali impianti.  Può essere sufficiente un apporto aggiuntivo pari alla capacità del transitgas, quindi una coppia di rigasificatori.  Il posizionamento in alto Adriatico ed in alto Tirreno potrebbero consentire minori costi infrastrutturali poichè questo gas dovrebbe fluire verso nord.  In alternativa il posizionamento di una unità in Sardegna consentirebbe la metanizzazione dell’isola ma richiederebbe un allaccio al continente ed eventualmente una diramazione per la Corsica.
L’altro aspetto è legato al potenziamento dell’impiego di metano per autotrazione. Oltre i vantaggi ambientali, al risparmio di importazioni petrolifere, al conseguente ridimensionamento ed efficientamento della capacità di raffinazione ed agli effetti di diversificazione ed efficientamento sulla rete di distribuzione, questa soluzione consentirebbe di utilizzare volumi di gas non più impiegati nel settore elettrico e civile per far spazio all’aumento di produzione delle fonti rinnovabili ed all’efficienza e di compensare un possibile scenario di volatilità dei prezzi del gas legato ad intervenuti fattori di costo della risorsa non convenzionale cui si è accennato oppure l’interruzione di un canale di fornitura. La caratteristica bifuel dei mezzi a metano consente infatti di utilizzare sempre il combustibile più a buon mercato.
Sugli altri obbiettivi generali della SEN si può essere d’accordo (esclusi quelli legati alla produzione di idrocarburi nazionali sui quali ci allineiamo alle critiche di ASPO)  ma quanto si propone per la relativa attuazione non entusiasma.
Innanzitutto lo scenario tendenziale “non mitigato” al 2020 è una classica proiezione econometrica basata su un tasso di crescita dell’economia nei prossimi 8 anni sulla cui entità (1,4%) si stenta a credere stante la crisi attuale e la mancanza di prospettive economiche.  Per quanto il MISE si sia applicato proponendo l’implementazione delle migliori pratiche nell’ambito dell’efficienza energetica, prevedendo il potenziamento dei certificati bianchi, delle normative edilizie ed industriali e degli incentivi in conto termico, c’è il rischio che il previsto calo dei consumi energetici di 5-10 MTep avvenga comunque per un processo spontaneo legato alla crisi; del resto, rispetto al picco dei consumi energetici avvenuto tra il 2005 e il 2006 ad oggi esso si è ridotto di 15 MTep solo in piccola parte attribuibili a politiche governative come i certificati bianchi, le rottamazioni e le normative sugli standard energetici.
Ma il punto più interessante è senz’altro come realizzare l’obbiettivo 2.  Come anticipato questo significa aumentare di 16-17 MTep il contributo delle rinnovabili dagli attuali 18.  Di questi da 9 a 11 sono attesi dall’aumento di produzione di energia elettrica da fonti rinnovabili (+ 50-60 TWh al tasso di conversione convenzionale odierno pari a 0,183 MTep/TWh) altri 1,5 provengono dall’applicazione della quota del 10% di biocarburanti sul totale dei consumi per autotrazione e altri 5-6 MTep dalle rinnovabili termiche, principalmente caldaie a biomasse e solare termico.
A mio avviso l’arditezza degli obbiettivi contrasta con le ridotte disponibilità di incentivi annui previsti a regime (solo 2,5 mld per le fonti elettriche e 2 mld ripartiti quasi equamente tra le rinnovabili termiche e i biocarburanti)  L’esiguità degli incentivi è giustificata dalla previsione di rapido raggiungimento della grid parity per il fotovoltaico e dalla ipotesi che si possano ottenere in modo sostenibile biocarburanti e biomasse per un totale di 6-7 MTep.
Per l’ambito elettrico non si tiene dovuto conto delle problematiche di dispacciamento introdotte dalle fonti rinnovabili intermittenti, le uniche che negli ultimi anni hanno avuto tassi di crescita compatibili con l’obbiettivo proposto dalla SEN, problematiche che devono essere risolte con sostanziosi investimenti sulla rete e, in prospettiva con la smart-grid, una cosa vaga di cui molto si parla ma nessun paese ancora ha, di cui la SEN non azzarda a calcolare i costi complessivi nè a dire chi dovrà pagarli. Anche la grid parity del FV, non lo è sulla base del costo industriale del kWh ma su quello di distribuzione, il che significa,considerando che la composizione della bolletta è per metà oneri di rete e di varia natura,  che anche se non si erogano incentivi, in compenso non si pagano gli oneri che vengono spalmati sugli altri utenti, l’effetto è lo stesso.  Tutto ciò contrasta con uno degli obbiettivi più importanti posti dalla SEN, la riduzione dei costi dell’energia.
Per l’ambito biomasse/biocarburanti si può affermare che l’evenienza di produrre tali quantità di biocombustibili senza confliggere con le esigenze alimentari dei paesi produttori delle materie prime utilizzate nella produzione di biofuel (considerando che anche gli altri paesi europei hanno l’obbiettivo del 10%) è abbastanza remota, come anche si è osservato in sede di UE prevedendo la possibilità che l’obbiettivo del 10% venga sospeso.  Il tutto è legato alla possibilità di un’affermazione rapida dei biocombustibili di II e III generazione, prodotti dal processamento della lignina o da alghe, quindi non in conflitto con le esigenze alimentari.  E’lecito anche dubitare della piena attuabilità in modalità sostenibile dell’aumento di sfruttamento delle risorse forestali per l’attuazione dell’obbiettivo definito per gli usi termici.  Anche se questa esigenza non è in conflitto con le esigenze alimentari, l’eventualità di una cattiva gestione forestale, con riduzione del manto boschivo per ottenere maggiori quantità di biomasse ad uso termico è un rischio da scongiurare, tenendo anche conto del dissesto idrogeologico che caratterizza la nostra penisola. L’approccio sarebbe criticabile anche se si prevedesse di importare biomasse a basso costo da paesi in cui la gestione forestale è necessariamente ancor meno sostenibile.
Non ci soffermiamo sul punto 3) che discende dal successo degli obbiettivi 1 e 2.
Non invidio affatto i tecnici del MISE che si sono dovuti impegnare per scrivere qualcosa di sensato in una situazione che va verso il disastro economico ed ambientale.
Io da parte mia, prendendo a riferimento il piano industriale KiteGen ho fatto presto a calcolare che partendo da una prima farm da 150 MW esercita ad un costo del kWh pari al prezzo medio sul mercato elettrico, considerando un tasso di apprendimento annuo che consenta un miglioramento delle performance tale da raggiungere le 3400 ore equivalenti al 2020 (solo la metà del massimo teorico) e ipotizzando un tasso di crescita annuo delle installazioni del 100% (inferiore a quello registrato dal fotovoltaico anche se l’IRR di quest’ultimo, all’epoca dei conti energia più generosi, sarebbe stato paragonabile a quello di una kite farm) si otterrebbe al 2020 una produzione di 65 TWh, senza necessità di incentivi nè di costosi adeguamenti alla rete. E lo si farebbe con una tecnologia italiana, generando molti più posti di lavoro di quelli ipotizzati in sen per lo sviluppo dell’oil&gas domestico (che è un settore molto capital intensive) e senza i rischi di devastazioni ambientali tipiche di quest’ultimo.
L’energia così prodotta consentirebbe:
1) superare l’obbiettivo SEN dei +60 TWh di energia rinnovabile senza dover aumentare il peso degli incentivi in bolletta e senza necessità di investimenti a lento rientro in smart-grid.  Una rete di KiteGen farm, grazie al monitoraggio costante dei flussi di vento ad alta quota, che consente di prevedere e bilanciare accuratamente la produzione, ed alla soluzione di stoccaggio locale basata su supercondensatori è essa stessa una smart-grid.
2) ridurre le importazioni di energia elettrica  di 5 TWh
3) disporre, nell’ipotesi qui riportata di potenziamento delle infrastrutture, di circa 33 Gmc di gas da esportare o spostare al settore dell’autotrazione, rendendo anche più sostenibili i trasporti e riducendo la necessità di importare petrolio, di cui non si prevede una discesa dei prezzi.
4) traguardare l’obbiettivo 20-20-20 di riduzione delle emissioni di CO2.
Ma la grande prospettiva consiste nel favorire l’affermazione di un nuovo modello italiano di gestione delle risorse energetiche, capace di affermarsi in Europa e di competere nel mondo.  Un modello che si basa sul coprire la maggior parte dei consumi energetici con energia elettrica rinnovabile ove possibile e di spostare sul gas i consumi meno adatti alla penetrazione dell’elettricità, come i trasporti su gomma.  Un modello che si rafforza con la presenza di aziende italiane in tutti i settori impattati.  Abbiamo eccellenze italiane nella intera filiera del gas e nella progettazione e produzione di veicoli a metano; KiteGen si candida ad esserlo nei sistemi eolici d’alta quota per la produzione massiva di energia rinnovabile a basso costo.

Gli impatti ambientali del Kitegen


Kite Gen è una tecnologia pulita, non lascia scorie ed inquinanti pericolosi, utilizza materiali completamente riciclabili, utilizza quantità di acciaio e cemento molto inferiori ad una torre eolica tradizionale di pari potenza ed ha un impatto visivo ed acustico limitato. In questo post, seppur con un taglio semplificato e ridotto, approfondiremo tali aspetti.

EMERGY ed EROEI
La definizione di EMERGY (EMbodied enERGY) secondo T.Odum http://www.jayhanson.us/page170.htm è “il lavoro di un dato tipo, precedentemente speso per un particolare prodotto o servizio”. Di particolare interesse è la stima dell’emergy di macchinari per la produzione energetica perchè tale dato risulta indispensabile per un successivo calcolo dell’eroei o eroi (Energy Return on Energy Input – vedi di seguito).
Per un confronto tra torri eoliche tradizionali e KiteGen stem, in prima approssimazione, consideriamo il peso delle due strutture, supponendo per semplicità che siano interamente in acciaio per entrambi i casi. Inoltre va considerata la fondazione in cemento, che per lo stem non è necessaria
Un generatore Kitegen non ha necessità di una strada camionabile di accesso perché il pezzo più pesante è di soli 200 chili, e, nella maggior parte dei casi, nemmeno di fondazioni. In tutto, servono circa trenta tonnellate di materiali (principalmente metalli e plastiche) contro le 250 tonnellate di acciaio e le 1500-2000 tonnellate di cemento necessarie per una torre eolica della stessa potenza.
Il peso del Kitegen Stem completo di strutture, macchine e dispositivi di sostegno (micropali di ancoraggio a terra) non eccede le 40 ton.

Da una Life Cycle Analisys o LCA effettuata in base a tali dati è possibile effettuare il calcolo dell’EROEI (Energy Return On Energy Input) come produzione cumulativa netta di energia nel ciclo di vita della macchina su Emergy.  In base alle seguenti:

Torre eolica tradizionale

* durata impianto: 20 anni
* fattore di produttività: 2500 MWh/MW
* potenza nominale 3MW

EROEI=20

KiteGen

* durata impianto: 20 anni
* fattore di produttività: 5000 MWh/MW
* potenza nominale 3MW

EROEI=375

Un valore circa 20 volte superiore a quello tipico dell’eolico tradizionale e capace di rendere l’eolico d’alta quota la fonte energetica potenzialmente più vantaggiosa e allo stesso tempo produttiva ad oggi conosciuta.

IMPATTO VISIVO

L’impatto visivo è limitatissimo in quanto la cupola è alta solamente 6 metri ed il braccio, oltre ad essere lungo solo 20 metri, è anche molto sottile, mentre i cavi sono invisibili già a poca distanza e l’ala, lavorando prevalentemente ad altezze dell’ordine del km, è difficilissima da notare. Sfruttando i venti d’alta quota, che sono presenti in tutta la fascia temperata, non è necessario posizionarsi in località particolarmente ventose (come le torri eoliche che si piazzano molto spesso su crinali molto visibili) e dunque si può sfruttare una qualsiasi area, anche degradata e di nessun interesse paesaggistico.

la comparazione è sempre tra una turbina eolica da 3 MW e KiteGen Stem da 3 MW
l’impatto visivo è misurato in steradianti ovvero A/r^2 dove A è l’area del manufatto e r la distanza di osservazione.
Trascurando la torre per la turbina eolica e la cupola per lo Stem si ha:
Torre eolica con pala di 44 m A=6000 mq
KG Stem con vela da 150 mq
A qualsiasi distanza r l’impatto della vela dello stem è sempre non meno di 40 volte inferiore

AVIFAUNA

Gli impatti sull’avifauna sono inferiori a quelli imputati alle torri eoliche in quanto i kite volano ad altezze tali da non essere frequentate da volatili. I cavi, man mano che ci si avvicina a terra, dove è più probabile che vi siano uccelli, si muovono a velocità sempre più basse. Se ad esempio il kite si muovesse a 50 m/s di velocità assoluta tangenzialmente alla curva avente come raggio il cavo (la direzione che produce i più ampi spostamenti del cavo, contrariamente al caso opposto di spostamento radiale in cui i cavi non si spostano ma si allungano solamente) ad un’altezza di 1 km, ad altezza di 100 m un punto sul cavo appare in movimento con una velocità di soli 5 m/s come si può dedurre dalla similitudine dei triangoli.

IMPATTO ACUSTICO

L’impatto acustico del Kitegen carousel è simile a quello di una ferrovia metropolitana a bassa velocità in quanto uno dei design ipotizzati è quello di un anello di binari dove le vele attuano la rotazione del generatore ad una velocità di circa 70 km/h.   Per quanto riguarda lo Stem le fonti di rumore sono i macchinari interni alla cupola, gli organi esterni in movimento (stelo, brandeggio), le vele ed i cavi.   Mentre per i macchinari interni alla cupola può considerarsi nullo il rumore in quanto la cupola può essere insonorizzata rispondendo ad eventuali normative in merito, l’oggetto dell’analisi si può restringere al rumore dello stelo in movimento ed alle parti volanti.  Pertanto è prevista una campagna di misurazione acustica da effettuarsi con le vele, i cavi e gli alternomotori dimensionati per i 3 MW e sull’esito della quale pubblicheremo un successivo post.

In risposta ai commenti sul forum delle liste civiche di Beppe Grillo

Nelle ultime settimane numerosi blogger si sono interessati al KiteGen e così sono stati pubblicati numerosi articoli sull’argomento e un gran numero di commentatori ha espresso le più diverse opinioni in merito.  Si ritiene opportuno fornire alcune precisazioni in merito a commenti pervenuti sul forum delle liste civiche di Beppe Grillo
Un commentatore chiede se siano state già vendute delle macchine KiteGen riportando due link nei quali si danno risposte contrastanti.  Il secondo link postato risale al gennaio 2011, e si riferisce alle opzioni di preacquisto, tutt’ora valide, su alcune delle macchine complete che verranno prodotte al termine della prima fase industriale di cui si parla nell’articolo del Fatto e nella proposta Alcoa.
Ciò che è importante capire, e chi ci segue con attenzione lo sa, è che i risultati raggiunti sono costanti e progressivamente sempre più importanti (purtroppo invisibili per chi vuole sentire solo il risultato finale).
C’è ancora del lavoro da fare, e il nostro piano industriale prevede che con le giuste risorse potremo fornire i risultati stupefacenti di cui il commentatore dubita in meno di anno. Ma, usando la metafora dell’automobile, noi stiamo costruendo la prima autovettura al mondo, siamo a buon punto ma ci si chiede costantemente quale sia la “velocità e autonomia massima” mentre il nostro scopo è creare una macchina affidabile, competitiva e replicabile in larga scala.
Ciò che è ancor più importante capire è che KiteGen sfrutta la risorsa più abbondante e disponibile che il nostro pianeta ci ha messo a disposizione. Ci sono letteralmente l’equivalente di migliaia di pozzi petroliferi che scorrono senza sosta sopra le nostre teste. Il KiteGen è semplicemente una piccola trivella che lavora verso l’alto e che necessita di minuscole risorse per il suo completamento rispetto a quelle che il nostro paese spende quotidianamete in altri progetti dal perlomeno dubbio ritorno economico.
Con una potenzialità del genere, vale davvero la pena essere sempre scettici? Quello che Andrea Migli voleva comunicare al forum è che queste eccellenze dovrebbero essere messe nelle condizioni di lavorare. Anche perchè se un progetto con queste potenzialità dovesse fallire gli stessi scettici di oggi potrebbero essere quelli che tra qualche anno si chiederanno con rammarico “Che fine ha fatto il KiteGen?”

Blown in the wind

comments Comments Off
By eugenio saraceno, 2012/10/30
Di Massimo Ippolito
Apprendo con grande dolore la notizia della morte, a soli 38 anni, di Corwin Hardham cofondatore e CEO di Makani Power.
Provo un profondo disappunto per aver perso in questo modo assurdo, ed ad una età dove è assurdo morire, un valido concorrente nella sfida e nello sforzo di introdurre nello scenario energetico globale i dispositivi AWE.
Con Corwin condividevo il discorso olistico sull’energia, il pesante influsso economico, l’occasione di giustizia sociale, l’impegno a divulgarne gli assunti e sono certo di averne pericolosamente condiviso il rischio cardiaco nel provare a spiegare ai nostri simili, le importanti ragioni che hanno mosso il nostro grande impegno.
Ogni volta che abbiamo dedicato del tempo con entusiasmo e passione a spiegare le ragioni del nostro lavoro, ad interlocutori supposti qualificati, ci esponiamo ad un epilogo devastante, tipicamente l’interlocutore non capisce quasi nulla nonostante un raffinato e generoso eloquio didattico o programmatico.
Questi malaugurati ed ansiogeni eventi ti sottraggono letteralmente dei mesi di vita dal grantotale della tua propria esistenza, Corwin forse è stato molto più generoso del sottoscritto nello spendersi ed ha con ogni probabilità esaurito prematuramente la sua dotazione vitale.

Articolo QualEnergia: appunti tecnici

Salve a tutti, questo è il mio primo post sul blog, mi presento. Mi chiamo Antonello Cherubini e sono neolaureato in ingegneria meccanica al Politecnico di Milano.
Vorrei fare una piccola appendice tecnica all’articolo di Alessandro Codegoni apparso su QualEnergia.it all’inizio di Ottobre 2012, sperando che possa essere utile a convincere alcuni scettici.

Nell’articolo si dice “… gli aquiloni, una volta in quota, agiscono come grandi ali o vele che vanno di bolina: il vento che passa sopra la loro superficie ricurva, genera una trazione, proporzionale alla superficie del kite e al cubo della velocità del vento.”
Vorrei specificare che la trazione delle funi non è proporzionale alla velocità del vento al cubo, bensì alla velocità al quadrato. Ad essere proporzionale alla velocità al cubo è invece la potenza. Forza x Velocità = Potenza.

Per quanto riguarda invece questo passaggio dell’articolo: “…però bisogna anche dire che molti degli stessi tecnici pensano che le stime di potenza e di capacità fatte da Ippolito si ridimensioneranno molto, una volta che si passerà dalla carta al mondo reale.” vorrei dire che ho provato dispiacere nel leggere queste ultime righe perché generano molta sfiducia in un lettore non esperto ed alimentano lo scetticismo. È giusto essere scettici nella vita, ma in questo caso vorrei che ci si confrontasse sui numeri.

Provo a spiegare in parole semplici un ragionamento che per essere compreso a pieno necessita di alcuni anni di studio. In particolare la dimostrazione della formula che userò è relativamente semplice, ma comunque assolutamente inaccessibile ad un pubblico generalista. Il modello matematico del volo del Kitegen è il modello di Loyd, del 1980. È assodato nella letteratura scientifica da oramai 30 anni.
La potenza estraibile dal Kitegen è data da questo prodotto:
Potenza = 1/2* rho * v^3 * 4/27 * E^2 * Cl * A
rho è la densità dell’aria
v è la velocità del vento che soffia sulla farm
E è l’efficienza aerodinamica dell’ala Cl è il coefficiente di lift (portanza aerodinamica) del kite
A è l’area del kite

Mettiamoci dentro dei numeri conservativi e vediamo cosa esce. “Conservativo” in gergo ingegneristico significa “non ottimistico”.
rho = 1.225 Kg/m^3
A = 150 m^2
v= 12 m/s (è quella utilizzata nel rating di una gigantesca turbina Vestas v100. Ricordiamo che la velocità poi si moltiplica al cubo, quindi è il numero più importante di questa formula)
E=10 (efficienza aerodinamica = rapporto portanza/resistenza, anche questo è un numero ragionevole, se volete posso approfondire, il discorso diventa complicato)
Cl=0.65 (anche qui il discorso diventa complicato)

Potenza Kitegen prima del capacity factor = 1/2* 1.225 * 12^3 * 4/27 * 10^2 * 0.65 * 150 = 1 528 800 W ovvero abbiamo già il nostro 1.5 MW (Di confronto, la famosa gigantesca Vestas v100 arriverebbe ora a 1.8MW)
Se a questo discorso aggiungiamo un capacity factor molto maggiore rispetto all’eolico convenzionale, cioè le famose 6000 ore/anno rispetto alle circa 2000 di una turbina classica, (anche qui sto un po’ semplificando il discorso) allora vi sarà chiaro che, utilizzando criteri di rating in qualche modo equivalenti a quelli dell’eolico tradizionale, si arriva in via “non ottimistica” a dire che il Kitegen è un impianto da 3MW. Se ci fidassimo dei numeri 6000 e 2000 allora dovremmo scrivere 4.5 MW, ma limitiamoci a fidarci dei 3MW. Il risultato è già incredibile.

Trovate ulteriori dettagli nella mia tesi di laurea.

Resto a disposizione per chi volesse ulteriori chiarimenti.
antonello.cherubini@gmail.com
Antonello Cherubini

Aggiornamenti su Alcoa, investitori e Piano Industriale

In molti ci chiedono aggiornamenti sul nostro coinvolgimento nel salvataggio dello stabilimento di Portovesme.

Ad oltre un mese dalla proposta KiteGen per Alcoa nessun esponente governativo ha preso contatto con noi per discutere i documenti presentati il 10 Settembre (1 e 2).

Restiamo ancora in attesa, convinti di aver prospettato l’unica vera soluzione possibile.

Probabilmente comporre in breve tempo un panel multidisciplinare come quello richiesto, qualificato in tutti i cinque domini dell’ingegneria in cui KiteGen spazia, è uno scoglio difficilmente aggirabile.

I contatti con Alcoa sono in corso già dalla prima ora; Alcoa aveva risposto con interesse a KiteGen (informando anche il sottosegretario De Vincenti e il Presidente Cappellacci) ma i rapporti si sono raffreddati poiché le garanzie istituzionali che Alcoa richiedeva per l’implentazione del nostro piano sono venute a mancare.

Il nostro auspicio è che la riforma del titolo quinto che riporterà la competenza sull’energia dalle Regioni allo Stato sia l’occasione per creare un organo all’interno del governo a servizio dello Stato in grado di capire le difficili e delicate questioni dell’energia.

La vicenda Alcoa ha creato grande interesse mediatico nei confronti di KiteGen che si è manifestato in un forte aumento di visite alla nostra sede sia da parte di giornalisti ma soprattutto da parte di nuovi investitori interessati a partecipare al progetto.

Ecco le più significative e recenti interviste rilasciate:

su greenreport.it

su corriere.it

Ai più desiderosi di novità positive, possiamo solo dire che in queste settimane sono in corso trattative piuttosto serrate con molti nuovi investitori in merito all’avvio del piano industriale.Anche l’aumento di capitale di SOTER ha ricevuto molte manifestazioni di interesse e ha portato finora ad un risultato veramente significativo.

PS: Visto che alcuni soci WOW ci hanno chiesto se è ancora possibile migrare in SOTER, vi informiamo che l’opzione di passaggio è ancora valida MA solo fino alla scadenza dell’attuale aumento di capitale fissata il 31/12/12

Seminar: Struttura e componenti del KiteGen Stem

Il post sulle funzioni dello stem ha animato diverse discussioni tecniche sulla nostra lista pubblica kitegen . Il seminar che proponiamo oggi inquadra la tematica aggiungendo dettagli sulle altre componentistiche elettriche e meccaniche correlate, tra le quali i sensori, la struttura igloo, gli alternomotori.

Le sette funzioni dello Stem

Lo Stem, letteralmente “Stelo” è il componente più appariscente del Kitegen  in configurazione yo-yo, tanto che l’intera macchina viene denominata Stem.

E’un braccio robotico sensorizzato realizzato in materiali leggeri (alluminio o fibra di carbonio) montato su una torretta rotante vincolata alla struttura portante (igloo o cupola) mediante una ralla.

Sebbene molte soluzioni adottate nei vari progetti di eolico d’alta quota (compreso il nostro prototipo mobilgen) non prevedano un braccio robotico di tali dimensioni (circa 20 m) lo stem non è certamente un elemento decorativo ma implementa ben 7 funzionalità della macchina:

1) La grande maggioranza dei fallimenti nei decolli (kite-crash) o nelle manovre di volo avviene a bassa quota.  Lo stem consente di operare sempre con la vela posta ad una quota opportunamente lontana dal suolo; inoltre il vento presente a 15-20 m di altezza sul terreno è sempre più intenso che al suolo, quindi la vela a quell’altezza ha maggiore probabilità di trovare il vento con la velocità sufficiente per il decollo.

2) il movimento ed i gradi di libertà del braccio robotico stem consentono di effettuare delle rapide manovre che generano un vento apparante sufficiente per far alzare la vela in volo anche in caso di venti molto deboli.

3) Lo stem consente ai cavi in uscita dagli alternomotori e dagli argani di rimanere allineati per molti metri riducendo la fatica e le vibrazioni su questi componenti

4) lungo lo stelo sono posti i sensori capaci di inviare alla centrale di controllo le informazioni sulle deformazioni meccaniche in atto e la posizione del braccio.  In particolare sono presenti 9 nanogauge (sensori di deformazione) e gli encoder che misurano gli angoli di rotazione del braccio rispetto al piano orizzontale e verticale

5) Quando la vela è investita  da raffiche lo stem è il primo componente cui viene trasmessa la forza impressa dalla raffica mediante i cavi.  I sensori di deformazione inviano le informazioni alla centrale di controllo che, qualora si rilevino raffiche troppo intense, è in grado di rispondere adeguatamente con manovre atte ad allontanare la vela dalla finestra di potenza riducendo la sollecitazione meccanica.   Durante il tempo di elaborazione e reazione della centrale di controllo, che per quanto breve è non nullo, lo stem consente di assorbire la sollecitazione meccanica mediante una opportuna deformazione elastica, salvaguardando i componenti meccanici più delicati.

6)  lo stelo consente di supportare il compasso, che è una mano robotica montata sulla sua sommità, che aggiunge gradi di libertà alle manovre sui cavi e la vela.  In particolare le due “dita” (o baffi) del compasso divaricandosi mantengono separati i cavi durante le manovre e ne evitano gli intrecci (twisting)

7) Secondo l’orografia dei siti i venti possono variare la direzione prevalente più o meno rapidamente nel corso delle stagioni o anche nel corso di una stessa giornata. Lo stelo, ruotando in accordo con le direzioni dei venti, consente sempre di posizionare la vela secondo la finestra di massima potenza.

Su Canaleenergia il Piano Industriale KiteGen per Alcoa

Canaleenergia, testata specializzata del Gruppo Italia Energia,  ci segue regolarmente e pubblica oggi una intervista riguardante il piano industriale proposto da KiteGen per il salvataggio di Alcoa.

KiteGen incontra il Presidente della Regione Sardegna Cappellacci sulla vicenda ALCOA

Si è svolto ieri sera l’incontro tra la Regione Autonoma Della Sardegna e la rappresentanza di KiteGen Resarch guidata dal CEO Massimo Ippolito. La Regione Sardegna si è dichiarata interessata ad intraprendere il percorso proposto da Kitegen, che prevede il finanziamento con fondi per l’innovazione di una fase di sperimentazione della nuova tecnologia eolica d’alta quota sotto l’egida di un panel di esperti proposti dai soggetti interessati, tra i quali potrebbero esservi la Regione stessa, esponenti del mondo accademico, rappresentanti dei lavoratori, degli investitori interessati a rilevare gli stabilimenti di Portovesme, di utility o distributori di energia elettrica oppure di Alcoa stessa qualora decidesse di non vendere più. A fronte del buon esito della sperimentazione sarà avviata la costruzione di farm eoliche troposferiche per un totale di 600 MW, ovvero 200 unità kitegen stem da 3 MW, destinate ad alimentare il complesso di Portovesme fornendo energia elettrica ad un costo inferiore a 25 euro/MWh ritenuto competitivo da Alcoa.
La Regione Autonoma della Sardegna presenterà il progetto al tavolo del MInistero Sviluppo Economico dedicato alla vicenda Alcoa che si terrà a Roma domani 19 Settembre

Aggiornamento del 20 Settembre

10:31 - Per Alcoa ci sono state “di recente altre due nuove manifestazioni di interesse che giudichiamo di una certa importanza: sono da prendere in considerazione, ma è molto prematuro parlarne”. Queste le parole del sottosegretario allo Sviluppo, Claudio De Vincenti. Intanto Glencore si è presa del tempo per decidere, e nel frattempo, ha ribadito De Vincenti, “sappiamo che Klesch ha già presentato ad Alcoa la richiesta di riaprire il negoziato”.

Governatore Sardegna: “Interesse da società cinese e di Torino”
I due nuovi gruppi interessati all’acquisto sono un’azienda torinese e una “grossa società cinese che avrebbe già richiesto di avere accesso alla data room”. Lo ha confermato il presidente della Regione Sardegna, Ugo Cappellacci, che invita però tutti alla prudenza. “Siamo ancora a una fase preliminare e di riservatezza e quindi non si conosce il nome dell’azienda”, ha spiega il governatore. Quanto alla società torinese, offre una nuova tecnologia per l’energia, “una cosa molto nuova che credo vada ancora testata – ha osservato Cappellacci – e non sia disponibile nell’immediato”.

da : http://www.tgcom24.mediaset.it/economia/articoli/1060950/alcoa-spuntano-altre-2-manifestazioni-interessegovernatore-sardegna-sono-cinesi-e-italiani.shtml

Aggiornamento su vicenda Alcoa-Kitegen

In serata il Presidente della Regione Sardegna Cappellacci incontrerà i nostri rappresentanti. Oggetto dell’incontro è la proposta Kitegen per Portovesme.

La notizia è stata riportata anche dalla stampa locale

Contro il riscaldamento climatico, serve KiteGen?

Il 9 settembre è uscito NATURE CLIMATE CHANGE con l’articolo di Ken Caldeira, Kate Marvel, Ben Kravitz con la ulteriore conferma delle posizioni di KiteGen ed altre informazioni inedite di grande importanza. Il giorno sucessivo come logica conseguenza e atto dovuto abbiamo inviato le lettere al governo con la proposta di soluzione per ALCOA. Forse è stato un atto troppo fiducioso sulla immediata fruibilità del lavoro su NCC e della buona copertura informativa ottenuta. [breve video di Caldeira che introduce lo studio]

Contavamo sui contenuti presenti, carichi di significative informazioni, questo al fine di dare supporto alle nostre argomentazioni più economiche, pensavamo che il Ministro Passera saltasse dalla sedia dicendosi  “ecco la soluzione!” Invece i giornalisti gli attribuiscono un commento scettico.

Ora vediamo di rimediare analizzando in queste pagine il lavoro di Caldeira, Marvel e Kravitz magari a puntate, i commenti ben ragionati dei lettori sono graditi.

Questo Blog qui linkato è curato da un docente di fisica e matematica, Marco Pagani che per primo ha  individuato ed evidenziato un aspetto del lavoro su NCC che risulta essere una novità, forse un’ancora di salvezza di grandissima attualità relativamente al cambiamento climatico. Il presidio di geoingegneria più potente finora individuato per raffreddare in emergenza la temperatura del pianeta, benchè si speri ancora che non diventi imprescindibile doverlo adottare.

Stabilire invece la massima potenza estraibile senza disturbare il clima, ne nel bene ne nel male, deve essere un esercizio di valutazione condotto tramite un principio di precauzione, che si scontra inoltre con delle convinzioni ideali di ciascuno sul modello di società e di popolazione numericamente sostenibile. Secondo le pubblicazioni scientifiche precedenti e sostanzialmente confermato da questo ultimo paper, sull’Italia fluisce una potenza totale il cui ordine di grandezza è intorno i 100 TW. Questa sarà una discussione lunga e ricca di posizioni filosofiche contrapposte ma per ora completamente priva di significato poichè fin’ora questo giacimento di energia rinnovabile  è stato intercettato solo perr una frazione infinitesima.

Permettetemi di fissare ad 1 TW la massima potenza estraibile dall’Italia, ovvero un arbitrario 1% di ciò che fuisce naturalmente, per il piacere dei numeri tondi e per offrire una metafora significativa:    L’Arabia Saudita produce 12,5 milioni di barili di petrolio al giorno, 521000 barili all’ora, la potenza termica equivalente contenuta nel petrolio estratto è di circa 1 TW, ovvero, gigawatt più gigawatt meno, equivalente a ciò che ho ipotizzato si possa estrarre dal vento troposferico italiano pur limitando modifiche climatiche. Questa è grossa vero?, rifate pure i conti se non ci credete, sono abbastanza facili.

Anche di radiazione solare ne abbiamo così tanta, ma per raccoglierla servono i dispositivi dispiegati sul territorio, mentre per l’eolico il pannello fotovoltaicocinetico è l’atmosfera stessa, già naturalmente dispiegata e manutenuta ed il KiteGen è solo la presa di forza che colletta l’energia raccolta dall’atmosfera.

Vorrei evidenziare un ulteriore grafico che mostra in particolare il vantaggio dell’eolico troposferico.

La linea blu è quella attribuibile al KiteGen, la linea rossa è attribuibile alle turbine eoliche. L’asse verticale indica la dimensione della superficie che intercetta il vento, comparata con il rateo di estrazione di energia cinetica sulle ascisse.

KEE vs drag area graph

estrazione di energia cinetica rispetto all'area di drag

Per una estrazione di potenza di 480 TW ogni kilometro cubo presso tutta la superficie del pianeta deve avere una turbina eolica che intercetta un fronte vento di 10000 metri quadrati,  un ettaro, mentre per l’eolico troposferico sono sufficienti un equivalente di 23 metri quadrati per km cubo.

L’eolico troposferico, però, non si limita al km cubo vicino terra, ma nello studio sfrutta idealmente tutta l’atmosfera, quindi per precisare il calcolo dell’equivalenza di superficie dobbiamo moltiplicare i 23 metri quadrati per il numero di cubi sovrapposti, tipicamente 10, corrispondenti a tutta la troposfera.

Quindi un’ala che spazzola 230 metri quadrati in altitudine sarebbe equivalente ad una pala eolica che spazzola un fronte vento di un ettaro.

Abbiamo detto un’ala che spazzola una superficie, ma quanto deve essere grande l’ala?

Un metodo semplificato è di dividere l’area da spazzolare con l’efficienza aerodinamica della stessa, un’ala con efficienza 10 qundi potrà avere una superficie di 23 metri quadrati per equivalere ad una torre eolica da 2,5 MW che tipicamente spazzola un ettaro di vento.

L’interesse pratico e tecnologico è quello di ottenere la potenza desiderata in un compromesso ideale tra quota di lavoro e superficie, ed è per questo che abbiamo scelto con il KiteGen Stem di volare sotto i 2000 metri con ali fino a 150 metri di superficie.

la  fluidità dei dati e delle prestazioni del KiteGen, che dipendono fortemente da decisioni sulla configurazione, sull’ala, la quota ed ovviamente il vento sono uno degli aspetti che infastidiscono chi è abituato a specifiche precise, che invece di apprezzare la libertà di modulazione e le opportunità offerte vede con sospetto il progetto, forse anche qualche consulente del governo.

In questo recente exploit mediatico, come dicevo, è stato attribuito al Ministro Passera un molto generico commento di tipo scettico sulla tecnologia KiteGen, provo ad interpretare. Sembra che i politici non siano più in grado di ragionare autonomamente senza le lobbies che li incalzano perennemente. Chi non si è fatto la lobby resta escluso da ogni ragionamento ed opportunità anche se è a vantaggio del paese e della collettività.

Ma se fosse chiaro a tutti di avere l’equivalente di una Arabia Saudita all’interno del territorio nazionale, merita ancora farsi delle domande a livello di banchieri, executive, politici, ministri  sul particolare sistema di trivellazione per estrarre l’energia e di come si fà per realizzarlo?

No! per favore, è materia complessa fidatevi dei brevetti “granted” dei riconoscimenti e delle 12 proposte KiteGen in risposta a bandi nazionali e regionali per l’innovazione tecnologica, ammesse a finanziamento ma sfortunatamente sempre senza copertura.

Metteteci piuttoso in condizione di lavorare e lasciateci fare senza tali commenti che altrimenti dai guai non ci usciamo mai più.

KiteGen, la vicenda Alcoa e Nature Climate Change

By stekgr, 2012/09/10

Ieri è uscito Nature Climate Change con un articolo che finalmente ri-conferma l’immenso giacimento di energia rappresentato dal vento troposferico, l’Italia è sorvolata da un flusso dal quale si potrebbe facilmente estrarre 1 TW continuo di potenza, ovvero oltre 8000 TWh di energia annui.

I quali, trasformati prosaicamente in denaro, equivarrebbero ad una produzione netta di ricchezza puramente endogena all’interno del territorio italiano stimabile in 800 miliardi di euro l’anno….  13000 euro/anno procapite!!

Dovrebbe essere ovvio, quindi il legame di attualità tra Nature, Alcoa e KiteGen, in quanto si tratta di tanta energia e a basso costo.

Quale originario del Sulcis Iglesiente ci tenevo a condividere questa riflessione, e pubblicare le comunicazioni spedite da KiteGen agli organi governativi e non, impegnati in queste ore sulla questione Alcoa.

Se comprese, sarebbero una soluzione ai problemi endemici di lavoro ed occupazione della mia terra.

Se attuate, creerebbero le risorse ed il “giro” economico per favorire il ripristino ambientale dalle molte devastazioni e costituirebbero una vetrina di sostenibilità che gioverebbe all’immagine di questa bellissima terra. Mentre a livello nazionale, sgraverebbero la collettività da un’altro miliardo di euro come quello già elargito ad Alcoa negli ultimi 15 anni.

Mi scuso con i destinatari per pubblicare online tali lettere, potrebbe apparire una forzatura ma altre volte tali comunicazioni, sfortunatamente non ottengono riscontro.

Stefano

KiteGen – ALCOA, come atto di informazione dovuto ed irrinunciabile.pdf

Stabilimento Alcoa di Portovesme – interesse acquisizione.pdf

KiteGen su ecomagination

comments Comments Off
By eugenio saraceno, 2012/09/06

Ecomagination, web magazine di General Electrics, ha pubblicato un articolo sul Kitegen a firma di Mark Halper.  Buona lettura.

Seminar: il ciclo Yo-yo

Dopo una breve pausa estiva pubblichiamo su Kiteblog un nuovo seminar di KiteGen a cura dell’Ing.Andrea Papini. In questo capitolo è illustrato il ciclo yo-yo del Kitegen Stem.

Per visualizzare la presentazione potrebbe essere necessario installare Adobe Shockwawe
Author: Ing.A.Papini

KiteGen costa un tubo

La recente notizia riguardante lo sviluppo del giacimento Tempa Rossa (Basilicata) in concessione a Total/Shell, che dovrebbe produrre 50.000 barili al giorno dal 2016 a fronte di un investimento di 1,6 mld, in cui è incluso anche un nuovo tratto di pipeline per il collegamento alla raffineria, conferma che la linea del governo in tema di energia è sempre più marcatamente quella di attirare questo tipo di investimenti nel titanico tentativo di ridurre la dipendenza del paese dagli idrocarburi di importazione estera. Titanico perchè rispetto ai 1,4 mln di barili consumati ogni giorno in Italia, di cui poco più del 10% di produzione domestica, la mole degli investimenti da direzionare sul settore per smuovere anche di qualche punto percentuale lo squilibrio tra import e produzione interna sono veramente ingenti. L’Italia è un paese poco interessante dal punto di vista degli idrocarburi, tuttavia ne possiede riserve non trascurabili, circa 1 mld di barili secondo stime di qualche anno fa. Sembrano numeri importanti ma, se relazionati ai consumi, fanno un paio d’anni di autonomia. I giacimenti italiani sono anche poco agevoli per via delle notevoli profondità che devono essere raggiunte. Per forza di cose i costi di estrazione sono elevati. In alcune aree, come ad esempio il medio Adriatico, la qualità del petrolio estratto è anche abbastanza scarsa. Non va meglio per il gas naturale; nel dopoguerra i giacimenti padani permettevano l’autosufficienza della nascente industria energivora ed ancora negli anni ’90 la produzione domestica era intorno al 30% del consumo totale. Oggi si è scesi intorno al 10% per il declino di queste produzioni ed i tanto decantati 30 miliardi di metri cubi che attendono di essere coltivati sotto il fondale dell’alto adriatico non sarebbero neanche 6 mesi di consumi. Sostanzialmente cercare di sviluppare il settore domestico dell’estrazione di idrocarburi è un’opzione con prospettive strategiche abbastanza limitate, seppure con l’attuale livello dei prezzi sia economicamente sostenibile e possa anche generare dei buoni profitti. Le compagnie non a caso si stanno muovendo intensamente sul suolo italiano solo da pochi anni (da quando i prezzi del barile sono elevati) benchè i giacimenti che andranno a sfruttare siano conosciuti da tempo. Dal punto di vista della strategia energetica di lungo termine, della gestione del mix di risorse e, non ultimo, del costo dell’energia il piano energetico che il governo sta preparando, basandosi sulla capacità di attrarre investimenti sulla coltivazione di giacimenti domestici di idrocarburi esigui ed ad elevato costo di estrazione è assolutamente insufficiente, per tacere delle implicazioni ambientali sulle aree interessate dalle trivellazioni. Il rimedio al problema energetico del paese non è certamente ridurre di pochi punti % la dipendenza dall’estero lasciando invariato il mix, che è la causa primaria del maggior costo dell’energia in Italia rispetto alla media europea. La generazione di energia elettrica prevalentemente da fonti costose come il gas naturale e l’eccessivo sbilanciamento del sistema dei trasporti verso la modalità su ruota sono le palesi anomalie da sanare. La strada presa con lo sviluppo delle fonti rinnovabili può alleviare la situazione, ma finchè si ricorre a fonti intermittenti, non competitive senza incentivi, le distorsioni si ritorcono contro gli utilizzatori dell’energia che dovranno pagare sia gli incentivi per sostenere economicamente le fonti rinnovabili che quelli per sostenere il sistema di bilanciamento della rete, garantito dai generatori termoelettrici di alto merito come dimostra il recente provvedimento sul capacity payment. Non ci stancheremo di ripetere che la soluzione è lo sviluppo di fonti rinnovabili non intermittenti ed a basso costo di generazione, cosa che con l’impegno di KiteGen negli ultimi anni si sta concretizzando come una opportunità reale. Se torniamo all’investimento di Total/Shell sul giacimento tempa rossa, 1,6 miliardi di euro, sarebbe sufficiente a costruire un generatore KiteGen Carousel da 2,5 GW, capace di produrre 12,5 TWh elettrici annui di energia, corrispondenti a 32,5 TWh termici, ovvero 2,8 milioni di tonnellate equivalenti di petrolio, il 4% della domanda annuale italiana di petrolio (69,7 MTep nel 2011). Il giacimento di Total/Shell produrrebbe intorno al 3,75% di tale domanda. Produrre 12,5 TWh elettrici da Kitegen farebbe risparmiare 2,5 miliardi di metri cubi di gas naturale che potrebbero essere impiegati per metanizzare il 25% dei trasporti pesanti su gomma, sostituendo circa 2 milioni di tonnellate di gasolio, ovvero circa 40000 barili al giorno, per produrre i quali l’output di Tempa Rossa, considerando le perdite di raffinazione e i sottoprodotti meno nobili non sarebbero sufficienti.  In sostanza una simile politica energetica consentirebbe, a parità di investimento, oltre a ridurre la dipendenza da petrolio importato, anche di ridurre le emissioni di gas serra di oltre 6 milioni di tonnellate annue e di ridurre l’incidenza degli idrocarburi nel mix di generazione elettrica calmierando gli effetti della volatilità di questi mercati sulle tariffe elettriche.

Eroei della fonte agricola nell’antichità

In un precedente articolo ho fornito una lettura su eroei e redistribuzione rimandando ripetutamente ad un successivo articolo (cioè questo) i dovuti dettagli a supporto di quanto affermato.

I dati disponibili dagli studi dei paleontologi e da fonti classiche e medioevali ci dicono che nell’antichità il legame tra energia investita nelle attività produttive ed energia ottenuta sotto forma di cibo era molto ben visibile, oggi è mascherato dalle sovrastrutture economiche dei mercati energetici e dei processi produttivi ma questo non significa che possiamo trascurare le considerazioni sull’EROEI quando analizziamo l’impatto del costo dell’energia sull’economia.
Nella preistoria l’umanità visse di caccia e raccolta. Dalle ricerche sugli ultimi popoli che ancora si basano su un’economia di caccia e raccolta, come i boscimani o alcune popolazioni della Nuova Guinea si è stimato che un cacciatore esperto ottiene mediamente 10 cal di cibo per ogni cal di energia che consuma durante la caccia. Ma sembra improbabile che la fonte energetica utilizzata nella preistoria possa arrivare ad un eroei di 10. Se consideriamo alcune fonti energetiche oggi disponibili, come il solare fotovoltaico, saremmo su livelli inferiori. Più avanti calcoleremo che le grandi civiltà antiche sfruttavano fonti energetiche con eroei ancora più bassi. Alla luce delle considerazioni su eroei e redistribuzione, riportate nel precedente articolo e considerando che l’uomo preistorico visse in società a complessità sociale inferiore a quello tipico delle grandi civiltà antiche è necessario approfondire il ragionamento.. Anzitutto sarebbe da considerare la tipologia di fonte energetica utilizzata, i prodotti della caccia e raccolta sono tipicamente deperibili in brevissimo tempo in special modo nei climi tropicali; il prodotto della caccia viene abitualmente consumato immediatemente e condiviso dai gruppi familiari estesi di cacciatori/raccoglitori. E’stato osservato che i gruppi di pigmei nell’africa centrale, quando, a volte, hanno a disposizione un elefante come preda, ne consumano sul posto quanto più possibile finchè non sono sazi o la carne non deperisce, abbandonando i resti che non riescono a consumare né tantomeno a trasportare. Questo vincolo limita fortemente l’efficienza dei cacciatori/raccoglitori nel procurarsi la loro fonte di energia. Inoltre bisogna considerare che non tutti i membri del gruppo sono in grado di cacciare (es. bambini piccoli) e che non tutti i cacciatori sono così abili,ad esempio i giovani alle prime armi devono accumulare esperienza. Quindi il dato eroei=10 non è corretto nell’ambito delle tecnologie disponibili nella preistoria per la conservazione del cibo e per la peculiare struttura sociale. Se un clan nomade fosse riuscito a procurare effettivamente 10 calorie per ciascuna investita (si intende il metabolismo basale di un maschio adulto 2-3000 kcal) è probabile che la battuta di caccia venisse interrotta per consumare prima possibile il cibo quando lo si reputa essere sufficiente per tutto il gruppo. Sarebbe assurdo continuare la battuta in quanto non sarebbe possibile consumare (e trasportare!) rapidamente tutto. Dunque finchè non si è trovata una tecnica di conservazione del cibo ed una maniera di trasportarlo agevolmente l’eroei della fonte energetica disponibile alle società dedite a caccia e raccolta è stato presumibilmente pari a 1:1 o poco più per quelle società preistoriche più dedite ad attività artistiche e spirituali, le quali denotano la capacità di procurare cibo in maniera sufficientemente efficiente per avere il tempo libero da dedicare all’espressione artistica.
Il passaggio dall’economia di caccia e raccolta a quella agricola non fu immediato, vi furono popoli che praticarono entrambe le attività o che si dedicarono all’agricoltura solo nella buona stagione, praticando la caccia nomadica per il resto dell’anno e molte altre combinazioni di queste attività, ma senza approfondire tutte le casistiche vorrei mettere in evidenza che con lo sviluppo dell’agricoltura si hanno cambiamenti radicali, innanzitutto il problema trasporto passa in secondo piano. Divenendo stanziali le popolazioni coltivano i territori adiacenti all’insediamento, riducendo notevolmente le distanze di trasporto. Inoltre si privilegiano raccolti facilmente conservabili, eventualmente applicando semplici tecniche come la fermentazione. Non a caso i più importanti prodotti agricoli dell’antichità furono cereali e leguminose, conservabili con semplice essiccazione per oltre 1 anno. Tra gli ortaggi si prediligevano i bulbi di liliacea, dotati di potenti antibatterici naturali che ne favoriscono la conservazione anche se non a lungo come i cereali e con opportuni accorgimenti. Il vitto degli operai che costruirono le piramidi fu pane e aglio o cipolle, due bulbi abbastanza facili da conservare.
Col progredire delle tecniche di conservazione acquisirono importanza altri prodotti come le bevande fermentate, l’olio e i latticini (formaggi in occidente e yogurt in oriente). L’allevamento in generale consentì di avere prodotti animali senza dover inseguire le prede.
Possiamo considerare che nell’età classica si fosse raggiunto il culmine della tecnica agricola antica, per tale epoca abbiamo anche disponibilità di trattati e manuali che forniscono preziosi dati che ci consentono di effettuare alcuni calcoli indicativi dell’eroei disponibile per quelle civiltà.
Lucio Giunio Columella, proprietario terriero all’epoca di Nerone stilò un interessante trattato “De re rustica et de arboribus”. I cereali sono il carburante dell’epoca, minestre di cereali e pane sono i cibi base destinati alle masse di lavoratori o combattenti. Conviene quindi focalizzarsi su questi dati riportati da Columella:

Quantità di sementi necessarie alla coltura: 4-5 modii di grano per jugero
1 modium (o moggio)=6,6 kg
1 jugero=0,25 ha
una coppia di buoi è sufficiente per arare 30 jugeri
uno iugero produce 15-20 modii con l’impiego di 10-11 giornate di lavoro e una coppia di buoi.

Tenuto conto che nelle grandi metropoli imperiali l’annona, essenzialmente per esigenze di ordine pubblico, forniva un reddito di sussistenza pari a 40 modii di grano procapite annui ad ogni capofamiglia che fosse cittadino romano in base al numero di membri della famiglia se ne può dedurre che una tale quantità venisse considerata più che sufficiente per nutrire uno schiavo. Considerando che non tutti i lavoratori agricoli erano di condizione schiavile è lecito ipotizzare anche quantità superiori (intorno ai 50 modii, quantità che effettivamente trasformata in farina consentirebbe di fornire una pagnotta al giorno e le dovute calorie per portare avanti un lavoro pesante).
Possiamo trascurare l’apporto energetico assorbito dai buoi aratori, questi animali non venivano certo nutriti con granaglie ma con biomasse ricavate dal maggese, cioè dai campi posti in riposo biennalmente o triennalmente. L’apporto energetico degli animali da tiro nella società antica non si riflette dunque sull’eroei della fonte energetica agricola ma sulla produzione totale della stessa, dovendo limitare al 50% o al 66% del totale la superfice coltivabile ogni anno. Si vede bene che il combinato disposto tra meccanizzazione dell’agricoltura ed uso intensivo dei fertilizzanti abbia reso non necessaria la pratica della rotazione moltiplicando per due la superficie arabile e sostenendo la produttività del suolo. Considerando gli altri miglioramenti nelle tecniche colturali, la messa a coltura di territori un tempo vergini, la possibilità di raggiungere falde acquifere profonde per irrigare territori altrimenti troppo aridi,  la meccanizzazione dei trasporti e le migliorie nella conservazione del cibo è spiegabile la differenza di popolazione di un fattore 15 tra l’età antica e la presente.

Tornando all’agricoltura antica pertanto consideriamo un caso ottimo in cui:
semino 4 modii e raccolgo 25, investendo 1 moggio per nutrire la necessaria manodopera schiavile per 10 giornate lavorative
in tal caso a fronte di un investimento 5 si ottiene 25 ovvero eroei=5
Caso peggiore:
semino 5 e raccolgo 20 ,investendo 1,5 modii per remunerare braccianti di stato libero per 11 giornate
in tal caso a fronte di un investimento 6,5 si ottiene 20 ovvero eroei=3.
Possiamo in base a tali dati considerare 4 una buona approssimazione dell’eroei disponibile per la fonte agricola nell’età classica.
Passando ad analizzare l’età alto medioevale, fonti interessanti dal nostro punto di vista sono i polittici e gli inventari dei monasteri, vere e proprie aziende agricole ed artigianali i cui metodi di produzione erano certamente allo stato dell’arte poichè diretti da monaci aventi accesso al meglio del sapere del’l'epoca, da essi custodito nelle biblioteche.
L’inventario del monastero di S.Tommaso Apostolo, in Emilia, riporta che a fronte della coltivazione di 5 moggi di cereali se ne ottenevano da 14 a 19. Le modalità operative di coltivazione non erano inferiori a quelle applicate in età romana, quindi valgono le considerazioni sia sulle giornate di lavoro necessarie, sia sull’utilizzo degli animali di lavoro. Ciò che cambia è il ricorso a manodopera non schiavile, ma di coloni, che erano comunque servi della gleba. Non sono sicuro che il reddito di questi coltivatori fosse maggiore del sostentamento dovuto agli schiavi in epoca classica. La diversa organizzazione economica, basata sulla curtes, di proprietà di un feudatario o di un monastero, prevedeva che le terre del feudo fossero suddvise tra i coloni e che ciascuno di essi dovesse un canone fisso, il che espone il solo coltivatore ai rischi di mancata produzione mentre assicura ai proprietari una rendita fissa (e pure arbitraria). Se si proietta nel tempo un simile sistema l’unica soluzione è che i contadini vengano tenuti al mero livello di sussistenza come fossero schiavi pur senza esserlo. Se il feudatario fissa il canone (se è libero di farlo lo fa certamente) in base ad un annata di buon raccolto, negli anni di carestia il colono non riesce a pagare il dovuto e contrae debiti con il feudatario stesso che pagherà con prestazioni lavorative gratuite, le corvéé. Il feudatario rinuncerebbe a qualcosa solamente se vedesse i coloni stremati rischiare la morte per fame, cosa che sarebbe un danno anche per il feudo e per lui stesso. Il fatto che si dovesse vincolare per legge il colono alla terra la dice lunga sulle scarse possibilità di rimpiazzare la forza lavoro. Dunque l’equilibrio è il reddito di pura sussistenza, esattamente come per gli schiavi.
Notiamo come i dati del monastero, sopra riportati siano peggiori di quelli riportati da Columella e attestino eroei compresi tra il 2,1 e il 3,1. Eppure l’area di Reggio Emilia cui si riferiscono è, dal punto di vista agricolo, sicuramente ottimale e, nel medioevo, una delle zone più ricche d’Europa.   Se ci facciamo ancora guidare dalla relazione tra eroei e redistribuzione ipotizzata nel precedente post, spiegheremmo benissimo la caduta di complessità della società altomedioevale rispetto alla civiltà antica classica. Ho argomentato altrove che la gigantesca crisi del mondo antico classico tra il III e V secolo, risoltasi nella caduta dell’Impero Romano fosse dovuta ad una crisi agricola e dunque energetica con calo delle rese causato dal depauperamento del manto boschivo (e relativo dilavamento del suolo), lo sfruttamento intensivo e l’indisponibilità di concimi (ancor oggi in alcune società arretrate in aree deforestate i rifiuti animali non vengono utilizzati come fertilizzanti ma essiccati e bruciati come combustibili). La popolazione calò, la complessità sociale si ridusse, gli stati divennero più piccoli e più poveri rinunciando ad ogni forma di redistribuzione, il potere centrale doveva venire a patti con i feudatari per ricevere i tributi. Le basse rese agricole avevano imposto un modello economico chiuso e asfittico dominato dalle figure legate alle gerarchie feudali: vassalli, valvassori, valvassini. Una piramide il cui unico scopo era raccogliere le poche risorse disponibili nel modo più capillare ed economico possibile e convogliarle verso l’alto, al costo di dover negoziare ad ogni gradino.
Nel basso medioevo la situazione migliorò, come testimoniato dall’aumento di popolazione. Gli avanzamenti tecnologici permisero innovazioni come la rotazione triennale o quadriennale, l’aratro a versoio, la trazione pettorale anzichè iugulare, che aumentarono l’eroei agricolo. Dal punto di vista sociale si vede il rafforzarsi delle monarchie nazionali ai danni della nobiltà e l’ascesa delle borghesie, ma certamente il salto maggiore nella disponibilità energetica si ha con lo sfruttamento delle fonti fossili delle quali parleremo più diffusamente in un successivo articolo.

(fine parte 3 – continua)

Seminar: principi di funzionamento del KiteGen

comments Comments Off
By eugenio saraceno, 2012/07/20

Continua la pubblicazione dei seminar di KiteGen a cura dell’Ing.Andrea Papini. In questo capitolo è illustrato il principio di funzionamento del Kitegen Stem.

Per visualizzare la presentazione potrebbe essere necessario installare Adobe Shockwawe

Author: Ing.A.Papini

Kitegen è su Canaleenergia

comments Comments Off
By eugenio saraceno, 2012/07/13

Canaleenergia, il portale web del Gruppo Italia Energia, che pubblica anche QE – QuotidianoEnergia , dedica uno spazio a KiteGen nella directory delle aziende specializzate in innovazione del settore energetico, con intervista al sottoscritto e presentazione video.

Panorama Theme by Themocracy